Aller au contenu

Vasilisa Shramchenko

Professeure, Faculté des sciences
FSCI Département de mathématiques

Présentation

Sujets, disciplines ou intérêts de recherche

Mathematical physics, Riemann surfaces, Hurwitz spaces, ribbon graphs, cluster algebras

Diplômes

  • (2000-2005). Ph.D. Mathematics and Statistics. Concordia University. Montreal, QC, Canada.

Expériences académiques

  • Professor. (2008-). Université de Sherbrooke. Sherbrooke, QC, Canada.

Publications

Articles

  • (2025). Triangular solutions to a Riemann-Hilbert problem from superelliptic curves. Arxiv.
  • (2024). Enumeration of multi-rooted plane trees. Arxiv.
  • (2024). Mutual incidence matrix of two balanced incomplete block designs. JOURNAL OF COMBINATORIAL DESIGNS. DOI
  • (2021). Deformations of the Zolotarev polynomials and Painleve VI equations. LETTERS IN MATHEMATICAL PHYSICS. DOI
  • (2021). Triangular Schlesinger systems and superelliptic curves. Arxiv.
  • (2020). Explicit examples of Hurwitz Frobenius manifolds in genus one. JOURNAL OF MATHEMATICAL PHYSICS. DOI
  • (2019). Algebro-Geometric Approach to an Okamoto Transformation, the Painleve VI and Schlesinger Equations. ANNALES HENRI POINCARE. DOI
  • (2018). Enumeration of <i>N</i>-rooted maps using quantum field theory. NUCLEAR PHYSICS B. DOI
  • (2018). Enumeration of N-rooted maps using quantum field theory. Arxiv.
  • (2018). Feynman diagrams, ribbon graphs, and topological recursion of Eynard-Orantin. Arxiv.
  • (2017). Note on algebro-geometric solutions to triangular Schlesinger systems. Arxiv.
  • (2015). Algebro-geometric solutions of the Schlesinger systems and the Poncelet-type polygons in higher dimensions. Arxiv.
  • (2013). Cluster automorphisms and compatibility of cluster variables. Arxiv.
  • (2013). Riemann-Hilbert problem for Hurwitz Frobenius manifolds: regular singularities. Arxiv.
  • (2012). Fuchsian Riemann-Hilbert problem for "real doubles" of Hurwitz Frobenius manifolds. JOURNAL OF MATHEMATICAL PHYSICS. DOI
  • (2012). On higher genus Weierstrass sigma-function. Arxiv.
  • (2011). Cluster Automorphisms. Arxiv.
  • (2011). Efficient Computation of the Branching Structure of an Algebraic Curve. COMPUTATIONAL METHODS AND FUNCTION THEORY.
  • (2011). Riemann-Hilbert Problems for Hurwitz Frobenius Manifolds. LETTERS IN MATHEMATICAL PHYSICS. DOI
  • (2008). Riemann-Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces: Irregular singularity. DUKE MATHEMATICAL JOURNAL. DOI
  • (2004). "Real doubles" of Hurwitz Frobenius manifolds. Arxiv.
  • (2004). Deformations of Frobenius structures on Hurwitz spaces. Arxiv.

Autres contributions

Cours enseignés à l'UdeS

  • MAT737 - Surfaces de Riemann. (2023-2026). (3CR).
  • MAT900 - Notions fondamentales de calcul différentiel. (2023-2026). (3CR).
  • MAT333 - Résolution de problèmes. (2025). (3CR).
  • MAT193 - Algèbre linéaire. (2024). (3CR).