Vasilisa Shramchenko
Professeure, Faculté des sciences
FSCI Département de mathématiques
Présentation
Sujets, disciplines ou intérêts de recherche
Mathematical physics, Riemann surfaces, Hurwitz spaces, ribbon graphs, cluster algebras
Diplômes
- (2000-2005). Ph.D. Mathematics and Statistics. Concordia University. Montreal, QC, Canada.
Expériences académiques
- Professor. (2008-). Université de Sherbrooke. Sherbrooke, QC, Canada.
Publications
Articles
- (2025). Triangular solutions to a Riemann-Hilbert problem from superelliptic curves. Arxiv.
- (2024). Enumeration of multi-rooted plane trees. Arxiv.
- (2024). Mutual incidence matrix of two balanced incomplete block designs. JOURNAL OF COMBINATORIAL DESIGNS. DOI
- (2021). Deformations of the Zolotarev polynomials and Painleve VI equations. LETTERS IN MATHEMATICAL PHYSICS. DOI
- (2021). Triangular Schlesinger systems and superelliptic curves. Arxiv.
- (2020). Explicit examples of Hurwitz Frobenius manifolds in genus one. JOURNAL OF MATHEMATICAL PHYSICS. DOI
- (2019). Algebro-Geometric Approach to an Okamoto Transformation, the Painleve VI and Schlesinger Equations. ANNALES HENRI POINCARE. DOI
- (2018). Enumeration of <i>N</i>-rooted maps using quantum field theory. NUCLEAR PHYSICS B. DOI
- (2018). Enumeration of N-rooted maps using quantum field theory. Arxiv.
- (2018). Feynman diagrams, ribbon graphs, and topological recursion of Eynard-Orantin. Arxiv.
- (2017). Note on algebro-geometric solutions to triangular Schlesinger systems. Arxiv.
- (2015). Algebro-geometric solutions of the Schlesinger systems and the Poncelet-type polygons in higher dimensions. Arxiv.
- (2013). Cluster automorphisms and compatibility of cluster variables. Arxiv.
- (2013). Riemann-Hilbert problem for Hurwitz Frobenius manifolds: regular singularities. Arxiv.
- (2012). Fuchsian Riemann-Hilbert problem for "real doubles" of Hurwitz Frobenius manifolds. JOURNAL OF MATHEMATICAL PHYSICS. DOI
- (2012). On higher genus Weierstrass sigma-function. Arxiv.
- (2011). Cluster Automorphisms. Arxiv.
- (2011). Efficient Computation of the Branching Structure of an Algebraic Curve. COMPUTATIONAL METHODS AND FUNCTION THEORY.
- (2011). Riemann-Hilbert Problems for Hurwitz Frobenius Manifolds. LETTERS IN MATHEMATICAL PHYSICS. DOI
- (2008). Riemann-Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces: Irregular singularity. DUKE MATHEMATICAL JOURNAL. DOI
- (2004). "Real doubles" of Hurwitz Frobenius manifolds. Arxiv.
- (2004). Deformations of Frobenius structures on Hurwitz spaces. Arxiv.
