Samuel Desrosiers, Glen B. Evenbly and Thomas E. Baker
Institut quantique & Département de physique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

Background Image: Decomposition of sites used in the tensor network renormalization (TNR) scheme.

tudying quantum physics has pro-

duced some of the most profound

discoveries of the past 100 years.

Whether determining how a metal

breaks, developing new medicines,
or making global warming predictions all
depend on some level on knowing how elec-
trons interact with other molecules in a
given material. Correctly describing how
electrons and other particles interact with
each other can allow for faster discover-
ies in the laboratory. Even before devel-
oping the next generation of technologies,
we can simulate how materials work on a
computer. To do this, the equations of
quantum physics must be simulated accu-
rately.

Quantum physics is a very abstract study. This
is because the answer, known as the wavefunction,
has very strange properties. Even though the
interpretation of this quantum result can be far
beyond the common experience, the answers we
obtain can be exceedingly accurate and predict
measured phenomena out to several digits in some
cases.

It can very difficult to simulate the core equa-
tion of quantum mechanics, Schiodinger’s equa-
tion. One problem that any theoretical physicist
faces when using a computer to solve a quan-
tum system is the amount of memory available

on a computer. Even if we only want to simu-
late system of a dozen sites, we would need a
supercomputer to store the information!

Clever strategies must be developed to solve
quantum systems, or we would lose out on the
ability to develop the next generation of technolo-
gies. The strategy that we will explore in this
document is to use tensor networks. A tensor
network takes the large quantum physics problem
and breaks it into smaller pieces.

Decomposing the quantum system into tensors
requires some effort. In order to make sure that
no information is lost in doing this—or that the
most relevant information is kept-the amount
of information between each tensor must be ac-
counted for.

Tensors and Diagrams

A tensor transforms an object of a certain size
and modifies it to be an object of the same or
another size. The mathematical vocabulary for
tensors are complex even for expert physicists,
so a series of diagrams has been created to make
tensors more friendly. We can write down a tensor
by how many lines come in and how many come
out. The following diagram shows an tensor with
3 lines on the left and 2 lines on the right:
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The tensor shown has 5 total lines, and in the
mathematical language this is known as a tensor
of rank 5. One simply counts the number of lines
(called indices) on a tensor to find its rank.

Basic Tensor Operations

Regular numbers like 1 or 2 or 3,000 have opera-
tions that can change them. For example, one can
add (+) numbers together. Subtraction (-), mul-
tiplication (x), or dividing (<) numbers is also
possible. Just like these basic operations, tensors
can also be acted upon by a few operations.

Contraction. Perhaps the most important
thing that two different tensors can do is join
legs together. For example, these two tensors
have been contracted along one (each) of their
legs.

Reshape. On just one tensor, we can also re-
group legs together. For example, we can make
reshape two legs to become one:

— )
—
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This has a mathematical and physical meaning.
If one is familiar with vectors and matrices, then
reshaping a vector can give a matrix:

[4)
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The physical meaning of performing a reshape
is that certain quantum states are partitioned.
One can think of grouping the quantum states
together for an eventual subdivision of the wave-
function.

Permute Dimensions. While crossing two
lines of a tensor on the page is an easy opera-
tion, a computer requires extra effort to copy the
data to a new place. Hence, permuting the order
of lines on a tensor requires care when actually
implementing a tensor network:

— )
—
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Singular Value Decomposition. While ten-
sors can be joined together by contraction, we
can also break apart two tensors with the sin-
gular value decomposition (often abbreviated as
the SVD). This decomposes a rank 2 tensor into

three tensors:
|
= - o

The SVD contains two tensors U (yellow rect-
angles) and V1 (blue rectangles) that will form
new unitary tensors in our system. The third ten-
sor, D (red diamonds), is extremely important.
It ranks the most important numbers that are
shared between the other tensors. This expresses
the entanglement and allows us to compress the
information in our network without sacrificing
too much accuracy. This can be done by deleting
the elements in D with the lowest values.
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Tensor Networks

With the tools of the last section, we can carry
out a series of SVDs to generate a network of
tensors that compose a matriz product state from
a full wavefunction:

 Jadlil Rl

That means a wavefunction can be represented
as group of tensors, each containing all the in-
formation of several sites in the more general
form.

Using these diagrams, an observable quantity
(shown is the energy of a quantum system) is
drawn as

The blue squares are the Hamiltonian, which
contains all the properties of the physical system.

The problem with representing the wavefunc-
tion is it is a large rank tensor, which require a
lot of memory to store. Tensor network decom-
position avoids storing the full wavefunction and
therefore can be stored on a regular computer.

One important class of problems that tensor
networks can solve are those that are classified as
locally entangled. This essentially means that the
changes in one tensor only affect a few tensors
around it. By careful construction, the red and
blue tensors in our diagram contract to a trivial
identity tensor. So, for example, if we want to
measure the magnetization on one site, we can do
it with just three tensors, no matter how many are
in the network! This is an example of how tensor
networks are useful for finding local properties.

Algorithms

To find the solution to a quantum problem, ten-
sors can undergo the four operations above in
many different ways. Each algorithm that uses
tensor networks applies the basic operations in
different orders and on different tensors.

Time-Evolving Block Decimation To find the
solution to a quantum problem, we can use a an
algorithm called time-evolving block decimation
(TEBD). In TEBD, a time evolution operator
can be constructed from the Hamiltonian. By
breaking up the full operator, we can apply small
two-site gates iteratively along the chain:

Thbhbbhd = bhbhbh

Applying that operator many times on our
wave function will be driven towards the lowest
energy solution for our system. At each step, the
resulting tensor obtained by the contraction of
the time evolution tensor and the two site tensors
(the grey tensor above), is separated again with
an SVD.

M_::: - |.||.|}.||.||.||.|).$

This procedure bring us to the lowest energy
state of our system. This same procedure can
also evolve our wavefunction in real time with
the same steps.
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Tensor Renormalization Group There is a
way to use tensor networks to study classical
systems. Just as in the quantum case, contract-
ing the full network would result in only one
high-rank tensor representing our system, which
would be too large to store. The general idea
behind these algorithms is to represent large sys-
tems of particles in interactions with only one
tensor without increasing the rank of that tensor.

To do this, a renormalization of the problem
can be applied. A renormalization of the problem
reduces the number of physical sites and also
eliminates unimportant degrees of freedom.

The tensor renormalization group (TRG) is an
example of how tensor networks can be used to
solve these systems efficiently. We form super-
sized (or coarsened) tensors, while using SVDs
to filter the result and obtain an accurate answer.
These two steps are repeated until convergence.

For all these algorithms we begin with an ini-
tial tensor representing the partition function—an
object from which many useful quantities of the
system can be deduced—of some initial state at
the lowest scale:

Each index of the tensor accesses a different
spin state of the system. The next step is to take
a series of SVDs to break up the tensor:
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We define new tensors such as:

Tensors from adjacent sites can be joined to-
gether:

JOE>

The resulting tensor is of the same rank as the
original while contracting our system and only
keeping the important information for solving our
problem.

$305000

The resulting tensor can then be used again
for another TRG step. This operation can be
performed on finite or infinite systems.

Many other algorithms (tensor network renor-
malization, etc.) can solve these two-dimensions
classical systems, but the general idea is still the
same: represent a large system by a tensor with
a low rank while keeping only the most useful
information for our problem.
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Conclusion

A brief overview of how tensor networks can rep-
resent quantum problems was presented in this
article. Tensor networks have a lot of applica-
tions and it is important to keep developing them
so that we can solve quantum problems. The
basic operations of a tensor network and two
algorithms—time-evolving block decimation and
tensor renormalization group—were summarized.
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