MECANIQUE QUANTIQUE III (PHQ 634)

PROFESSEUR

Titre:	Mec. Quantique III	
Sigle:	PHQ 634	
Crédits:	3	
Heures de cours:	3	Nom: C. Bourbonnais
Exercices:	1	Bureau: D2-1071
Travail Personnel:	5	Horaire de
Session:	5	de disponibilité:

COURS

PLACE DU COURS DANS LE PROGRAMME

Type de cours: optionnel

Cours préalable: Mécanique quantique II (PHQ 434)

MISE EN CONTEXTE DU COURS

Le cours de mécanique quantique III est le troisième et dernier cours du premier cycle dédié à la physique quantique. En tant que cours optionnel, il approfondit le formalisme et diversifie les méthodes de calcul et les applications à plusieurs situations rencontrées surtout en physique atomique. Ce cours est également un préalable essentiel à des études de deuxième cycle dans un grand nombre de domaines de la physique.

OBJECTIFS

Objectifs généraux:

- approfondir les outils de base et introduire les méthodes approximatives en mécanique quantique
- développer l'aptitude à solutionner des systèmes microscopiques simples à l'aide de différentes méthodes de calcul.

Objectifs spécifiques

A la fin du cours de PHQ 634, l'étudiant devrait être capable de:

- maîtriser la méthode de combinaison des moments cinétiques, notamment ceux du spin et du moment cinétique orbital
- maîtriser les méthodes d'approximation de la mécanique quantique telles que la théorie de perturbation stationnaire et dépendante du temps, la méthode des variations; les appliquer à plusieurs catégories de problèmes rencontrés en physique atomique, moléculaire, de l'état solide, ...
- maîtriser les rudiments de la théorie de la diffusion et ceux de la mécanique quantique relativiste.

PLAN DE LA MATIERE

La matière est distribuée sur 13 semaines effectives de cours. La répartition donnée ci-dessous [avec la date de remise des devoirs] n'est qu'approximative et doit être considérée comme un guide.

Semaines 1-2

• Spin de l'électron, aspects historiques. Équation de Dirac, limite faiblement relativiste, interaction spinorbite, Hamiltonien de structure fine, de spineur. [Devoir #1, remise semaine #2]

Semaines 2-4

• Composition de moments cinétiques, changement de base en présence de plusieurs moments cinétiques, coefficients Clebsh-Gordan, théorème de Wigner-Eckart. [Devoir #2, remise semaine #4]

Semaines 5-7

• Théorie des perturbations stationnaires, formalisme pour les corrections perturbatives à des niveaux nondégénérés et dégénérés. Applications diverses: structures fine et hyperfine du spectre de l'hydrogène, bandes d'énergie dans les solides, Méthode des variations, applications: atome d'hélium, [Devoir #3, remise semaine #6] [Examen intrasemestriel]

Semaines 8-9

• Particules identiques. Postulat de symétrisation, principe de Pauli. Atomes à plusieurs électrons, tableau périodique. Gaz d'électrons.

Semaines 9-10

• Liaisons moléculaires. Approches de Heitler-London et d'orbitales moléculaires (LCAO). Molécules aromatiques: benzène, [Devoir #4, remise semaine #10]

Semaines 11-12

• Théorie des perturbations dependantes du temps. Prévisions physiques, règle d'or de Fermi. Applications: effet photoélectrique,

Semaines 12-13

• Théorie de la diffusion (élastique). Section efficace. Approximation de Born. Méthode des déphasages. [Devoir #5, remise semaine #13]

Examen final

METHODES PEDAGOGIQUES

- Exposé magistral
- Questions durant l'exposé et résolutions de problèmes sous forme de devoirs.

EVALUATION

1. Moyens d'évaluation:

2. Type de questions:

3. Pondération:

4. Moments prévus pour l'évaluation:

5. Critères d'évaluation:

Devoirs et deux examens. Problèmes à résoudre, questions à développement.

20/100: devoirs 30/100: intra 50/100: final.

Dates fixées par la faculté. Vérification des connaissances, de leur compréhension et leur application.

BIBLIOGRAPHIE

Références:

- 0 : Notes de cours
- 1*. Mécanique Quantique (Tomes <u>II</u> + I), Cohen-Tannoudji, Diu et Laloe, Ed. Hermann (1973).
- 2.a Introductory quantum mechanics, R. L. Liboff, Addison-Wesley, 2002
- 2.b Quantum Mechanics, an introduction, W. Greiner, Springer, 1994.
- 3*. Quantum Mechanics, seconde édition, R. Shankar, Plenum press, 1997.
- 4. Mécanique quantique I-II, J. L. Basdevant, Presses de l'École Polytechnique, 1985.
- 5. Modern Quantum Mechanics, J. J. Sakurai, Addison-Wesley (1985).
- 6. Mécanique quantique, L. Landau et E. Lifchitz, Ed. Mir (1974).
- 7*. Mécanique quantique, Tomes I et II, Messiah, ed. Dunod, Paris (1995).
- 8. Quantum Mechanics, E. Merzbhacher, Wiley (1970).
- 9. Quantum Mechanics, L. E. Ballentine, Prentice-Hall (1990).
- 10. Lectures Notes on Physics, R. Feynman and Sands, Addison-Wesley (1966).
- 11. Quantique (Rudiments), J-M. Levy-Leblond and F. Balibar, eds du C.N.R.S. (1984).
- 12. Conceptual Foundations of Quantum Mechanics, B. D'espagnat, Addison-Wesley.
- 13. The Conceptual Development of Quantum Mechanics, Max Jammer, Romash publishers, AIP
- 13. Introduction to Quantum Mechanics, Henrik Smith, World Scientific.
- 14*. Physical chemistry, W. J. Moore, pretice-Hall, 1962.
- 15. Introduction to quantum mechanics, D. J. Griffiths, Prentice-Hall, 1995.
- 16. Quantum Mechanics, D. Rapp, (Holt Rienehart Winston), 1971.
- 17. Quantum mechanics for engineering, materials science and applied physics, Herbert Kroemer, Prentice-Hall, 1994.
- 18*. Mécanique Quantique I et II, Claude Aslangul, Editions De Boeck, Bruxelles, 2007.
- 19. Quantum Mechanics: Fundamentals, 2 édition, K. Gottfried and T.-M. Yan, Springer, 2003.
- 20. Quantum mechanics, fifth edition, A.I.M. Rae, Taylor & Francis, 2008