

Trimestre d'hiver 2023

Faculté des sciences Département de physique

ÉLECTRICITÉ ET MAGNÉTISME PHQ-224

Professeur	Chargé d'exercices
Bertrand Reulet	Maxime Béland
Bureau D2-2084	Bureau D9-2015
Tel 819 821 8000 ext 66233	
bertrand.reulet@usherbrooke.ca	maxime.beland2@usherbrooke.ca

OBJECTIFS

Ce cours a pour but la compréhension des phénomènes physiques fondamentaux reliés aux charges électriques, courants électriques et moments magnétiques, dans le vide et dans la matière. Il est fondamental dans la formation scientifique des physiciennes et des physiciens, et occupe une place importante dans les concepts de base traités en physique et en génie. Ce cours obligatoire constitue le premier de deux cours consacrés à l'électromagnétisme dans le programme de physique. Il s'adresse aussi aux étudiantes et étudiants inscrits au baccalauréat en enseignement au secondaire.

METHODE

Cours magistraux au tableau (1h50), séances d'exercices (1h50) toutes les deux semaines environ. Quelques démonstrations expérimentales viendront concrétiser les notions vues en cours. Il est très important de prendre des notes pendant les cours.

EVALUATION

Devoirs (5) 30%. Intra (20/2 - 24/2) 30%. Examen final (17/4 - 28/4) 40%.

Les devoirs peuvent être faits en groupe de 2. Des notes de cours succinctes seront fournies après avoir fini chaque chapitre.

BIBLIOGRAPHIE

- D. J. Griffiths, Introduction to electrodynamics, 3ème (2005) ou 4ème edition (2017), Prentice Hall.
- R. Feynman, Électromagnétisme 1, Les cours de physique de Feynman, Dunod (2013).
- A. Zangwill, Modern electrodynamics, Cambridge University Press (2013).

PLAN DÉTAILLÉ

- I. Introduction et rappels
- II. Électrostatique dans le vide
 - II.1 Champ électrique et distribution continue de charges
 - II.2 Théorème de Gauss et applications
 - II.3 Équations locales de l'électrostatique
 - II.4 Le potentiel électrostatique
 - II.5 Énergie et travail
 - II.6 Conducteurs à l'équilibre
- III. Électrostatique dans les milieux
 - III.1 Polarisation des milieux diélectriques
 - III.2 Déplacement électrique
 - III.3 Diélectriques linéaires. Ferroélectriques
 - III.4 Énergie et travail
 - III.5 Compléments
- IV. Magnétostatique dans le vide
 - IV.1 Force de Lorentz. Champ magnétique
 - IV.2 Champ magnétique créé par un courant : loi de Biot et Savart
 - IV.3 Densité de courant et équation de conservation de la charge
 - IV.4 Théorème d'Ampère et applications
 - IV.5 Équations locales de la magnétostatique
 - IV.6 Le potentiel vecteur magnétique
 - IV.7 Travail de la force de Laplace. Énergie magnétique
- V. Magnétostatique dans les milieux
 - V.1 Aimantation des milieux magnétiques
 - V.2 Le champ auxiliaire
 - V.3 Diamagnétisme, paramagnétisme, ferromagnétisme
 - V.4 Énergie
- VI. Électrodynamique
 - VI.1 Loi d'Ohm. Résistance. Effet Joule
 - VI.2 Induction. Champ électromoteur. Loi de Faraday
 - VI.3 Équations de Maxwell dans le vide
 - VI.4 Équations de Maxwell dans la matière
- VII. Perspectives