Regression estimation based on Bernstein density copulas

Taoufik Bouezmarni †‡, Benedikt Funke§, Félix Camirand Lemyre †

November 4, 2014

ABSTRACT

The regression function can be expressed in term of copula density and marginal distributions. In this paper, we propose a new method of estimating a regression function using the Bernstein estimator for the copula density and the empirical distributions for the marginal distributions. The method is fully non-parametric and easy to implement. We provide some asymptotic results related to this copula-based regression modeling by showing the almost sure convergence and the asymptotic normality of the estimator by providing the asymptotic variance. Also, we study the finite sample performance of the estimator.

Key words: Regression estimation, Nonparametric estimation; Bernstein copula density estimator; asymptotic properties; asymptotic normality.

†Corresponding author. E-mail address: Taoufik.Bouezmarni@USherbrooke.ca.
‡Département de Mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1.
§Technische Universität Dortmund. Fakultät für Mathematik. Lehrstuhl LSIV. Vogelpothsweg 87, 44227 Dortmund.

*Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and financial support from the German Science Foundation (DFG), SFB 823 are gratefully acknowledged.
1 Introduction

The regression analysis is one of the most used tools in practice. The linear and non-linear regression models are the popular regression models. The ordinary least squares and the nonlinear least squares are usually used to estimated their parameters. However, the two models are too restrictive and misidentification of the model leads to a wrong conclusions. The nonparametric approach provides an excellent alternative since it does not suppose any specific model for data. Nadaraya-Watson and the local linear kernel are the nonparametric methods that are widely used in order to estimate the regression functions.

Given \(\mathbf{X} = (X_1, \ldots, X_d)^\top \) be a random vector of dimension \(d \geq 1 \) and \(Y \) be a random variable, the regression model is the conditional mean of \(Y \) given \(\mathbf{X} \) which can deduced from the conditional density function of \(Y \) given \(\mathbf{X} \). Thanks to (Sklar 1959), the conditional density can be expressed in term of copula density and marginal distributions. Based on this idea, recently, regression function is expressed in term of copula density and marginal distributions in (Noh, Anouar, and Bouezmarni 2013). This relation has been already applied in (Sungur 2005), (Leong and Valdez 2005) and (Crane and Van Der Hoek 2008) to compute the mean regression function corresponding to several well known copula families (Gaussian, t, Farlie-Gumbel-Morgenstern (FGM), Iterated FGM, Archimedean, etc.) with single \((d = 1) \) and multiple covariate(s). To estimate the regression function, (Noh, Anouar, and Bouezmarni 2013) have suggested a semiparametric way by estimating the marginal distributions nonparametrically and by assuming a parametric model for the copula density function. This method avoid the curse of dimensionality and simple to implement. However, the misspecification of the parametric copula can lead to a considerable bias. Indeed, (Dette, Van Hecke, and Volgushev 2014) have considered a simple example where the specification of the parametric copula does not fit the underlying regression.

To avoid the problem of misspecification, we propose a new estimator by estimating the copula density and the marginal distributions using nonparametric method. We estimate the marginal distributions by the rescaled empirical estimator. Several nonparametric approaches have been proposed to estimate the copula density functions. (Gijbels and Miel-
niczuk 1990) estimate the bivariate copula density using smoothing kernel methods. They also suggest the reflection method in order to solve the well known boundary bias problem of the kernel methods. (Chen and Huang 2007) propose a bivariate estimator based on the local linear estimator, which is consistent everywhere in the support of the copula function. Bernstein estimator for copula density was proposed by (Sancetta and Satchell 2004) for independent and identically distributed (i.i.d.) data and investigated by (Bouezmarni, Rombouts, and Taamouti 2010) for dependent data. This method is easy to implement and free from boundary bias problem. Recently, (Bouezmarni and Rombouts 2014) have shown the performance of the Bernstein copula estimator for density that is not necessarily bounded at the corners. Recently, (Janssen, Swanepoel, and Verbeke 2014) investigate Bernstein estimator when the marginal distributions are estimated. Bernstein estimator for copula density is used by (Bouezmarni, El ghouch, and Taamouti 2014) for testing the conditional independence. Also, in (Bouezmarni and Rombouts 2014), based on Bernstein estimator copula density, they have proposed Granger causality measures.

This paper is organized as follows. The estimator of regression function based on Bernstein copula density estimator is introduced in Section 2. Section 3 provides the asymptotic properties of this estimator. We show the almost sure convergence and the asymptotic normality with the asymptotic variance of the new estimator. In Section 4, we provide simulation results that show the performance of the proposed estimator. Section 5 concludes and the proofs of the asymptotic results are presented in the Appendix.

2 Regression estimator based on Bernstein copula density estimator

Let \(\mathbf{X} = (X_1, \ldots, X_d)^\top \) be a random vector of dimension \(d \geq 1 \), a set of covariates, and \(Y \) be a random variable, the response variable, with cumulative distribution function (c.d.f.) \(F_0 \) and density function \(f_0 \). We denote by \(F_j \) the c.d.f. of \(X_j \) and we denote by \(f_j \) its corresponding density. For some \(\mathbf{x} = (x_1, \ldots, x_d)^\top \) we will use \(F(\mathbf{x}) \) as a shortcut for \((F_1(x_1), \ldots, F_d(x_d)) \). From (Sklar 1959), the c.d.f. of \((Y, \mathbf{X}^\top) \) evaluated at \((y, \mathbf{x}^\top) \) can
be expressed as \(C(F_0(y), F(x)) \), where \(C \) is the copula distribution of \((Y, X^\top)^\top \), that is, the distribution function from \([0,1]^{d+1}\) to \([0,1]\) defined by \(C(u_0, u_1, \ldots, u_d) = P(F_0(Y) \leq u_0, F_1(X_1) \leq u_1, \ldots, F_d(X_d) \leq u_d) \). Indeed, the distribution function can be controlled by the marginal distributions, which provide the information on each component, and the copula that captures the dependence between components. This fact allows a great flexibility for modeling approach where in the first step one models the marginal distributions and in the second step one characterizes the dependence using a copula model. For more details, see (Nelsen 2006) and (Joe 1997). The conditional density of \(Y \) given \(X^\top \) is given by

\[
f_0(y) \frac{c(F_0(y), F(x))}{c_X(F(x))},
\]

where \(c(u_0, u) \equiv c(u_0, u_1, \ldots, u_d) = \frac{\partial^{d+1} C(u_0, u_1, \ldots, u_d)}{\partial u_0 \partial u_1 \ldots \partial u_d} \) is the copula density corresponding to \(C \) and \(c_X(u) \equiv c_X(u_1, \ldots, u_d) = \frac{\partial^d C(1, u_1, \ldots, u_d)}{\partial u_1 \ldots \partial u_d} \) is the copula density of \(X \). Obviously, the conditional mean, \(m(x) \), of \(Y \) given \(X = x \) can be written as

\[
m(x) = E(Yw(F_0(Y), F(x))) = \frac{e(F(x))}{c_X(F(x))}, \tag{1}
\]

where \(w(u_0, u) = c(u_0, u)/c_X(u) \) and

\[
e(u) = E(Yc(F_0(Y), u)) = \int_0^1 F_0^{-1}(u_0)c(u_0, u)du_0. \tag{2}
\]

The regression function is a weighted mean with weights induced by the unknown copula density function \(c \) defined above.

Note that in the single covariate case and if the covariates are mutually independent, we have, \(c_X(u) \equiv c_X(u_1) = 1 \) for all \(u_1 \in [0,1] \). In such a case the weight function \(w \) coincides with the copula density \(c \) and (1) reduces to \(m(x_1) = e(F_1(x_1)) = E(Yc(F_0(Y), F_1(x_1))). \)

For given estimator \(\hat{w} \), \(\hat{F}_0 \) and \(\hat{F}_j \) for \(w \), \(F_0 \) and \(F_j \), respectively, the regression \(m \) can be estimated by

\[
\hat{m}(x) = \int_{-\infty}^{\infty} y\hat{w}(\hat{F}_0(y), \hat{F}(x))d\hat{F}_0(y), \tag{3}
\]

where \(\hat{F}(x) = (\hat{F}_1(x_1), \ldots, \hat{F}_d(x_d))^\top \).

Depending on the method to estimate the components in (3), \(\hat{m}(x) \) can be a nonparametric or a semiparametric or a fully parametric estimator. (Noh, Anouar, and Bouezmarni
2013) have proposed a semiparametric way by estimating the marginal distributions nonparametrically and they suppose a parametric model for the copula density function. This suffers seriously from misspecification of the parametric copula.

Here, we use a nonparametric estimators for c, F_0 and $F_j, j = 1, \ldots d$, this leads to a fully nonparametric estimator. Nonparametric methods for estimating c is based on Bernstein copula density estimator (see (Sancetta and Satchell 2004)) and given by:

$$c_{k,n}(u_0, u) = \sum_{v_0=0}^{k} \sum_{v_1=0}^{k} \cdots \sum_{v_d=0}^{k} C_n \left(\frac{v_0}{k}, \frac{v_1}{k}, \ldots, \frac{v_d}{k} \right) \prod_{j=0}^{d} p'_{\nu_j,k}(u_j),$$

where $k \equiv k_n$ is an integer that depends on the sample size n, C_n is the empirical copula function of the vector $(Y, X) = (Y, X_1, \ldots, X_d)$ given by:

$$C_n(u_0, u) = F_n \left(F_{n0}^{-1}(u_0), F_{1n}^{-1}(u_1), \ldots, F_{nd}^{-1}(u_d) \right)$$

with F_n (resp. $F_{n0}, F_{1n}, \ldots, F_{nd}$) is the empirical distribution function of (Y, X) (resp. of Y, X_1, \ldots, X_d) and $p'_{\nu_j,k}(u_j)$ is the derivative, with respect to u_j, of $p_{\nu_j,k}(u_j)$, for $j = 0, 1, \ldots, d$, which is the binomial distribution function:

$$P_{\nu_j,k}(s_j) = \binom{k}{v_j} u_j^{v_j} (1 - s_j)^{k-v_j}.$$

A nonparametric estimator of the regression function m using the estimator \hat{c} when $d = 1$ or the covariates are mutually independent is given by:

$$\hat{m}_n(x) = \frac{1}{n} \sum_{i=1}^{n} Y_i c_{k,n}(F_{0n}(Y_i), F_{1n}(x))$$

This estimator can be rewritten as follows:

$$\hat{m}_n(x) = \frac{1}{n} \sum_{i=1}^{n} Y_i \frac{1}{n} \sum_{j=1}^{n} \sum_{l=0}^{k} \prod_{h=0}^{d} P_{\nu_j,k}(s_j)$$

where $\kappa_i(u, v) = 1 \left(Y_i \leq F_{0n}^{-1}(u), X_i \leq F_{1n}^{-1}(v) \right)$ and $\tilde{\kappa}_i(u, v) = 1 \left(Y_i \leq F_{0n}^{-1}(u), X_i \leq F_{1n}^{-1}(v) \right)$. For $d > 1$, the regression function will be estimated by:

$$\hat{m}_n(x) = \frac{1}{nc_{k,n}(F_{1n}(x_1), \ldots, F_{nd}(x_d))} \sum_{i=1}^{n} Y_i c_{k,n}(F_{0n}(Y_i), F_{1n}(x_1), \ldots, F_{nd}(x_d)).$$
The asymptotic normality of $\hat{m}_n(x)$ is hardly tractable since all the observations are used in the regression and in the estimation of the copula density, which causes too much of cross-dependencies. One way to solve this problem is to use one set of data to estimate the copula density and the other to build the regression estimator-part. Thus let $\{\xi_i\}_{i=1}^{\infty}$ be a sequence of i.i.d random variables such that $P(\xi_i = 0) = P(\xi_i = 1) = 1/2$. The second version of the regression estimator using Bernstein copula density is defined, when $d = 1$, as

\[
m_n(\xi) = \frac{1}{S_n^{(1)}} \sum_{i=1}^{n} \xi_i Y_i \frac{1}{S_n^{(2)}} \sum_{j=1}^{k} \sum_{l=0}^{k} \sum_{h=0}^{k} (1 - \xi_j) \hat{\nu}_j(l/k, h/k) P_{k,l}(F_0(Y_i)) P_{k,h}(F_1(x))
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \hat{\nu}_j(l/k, h/k) P_{k,l}(F_0(Y_i)) P_{k,h}(F_1(x))
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \hat{c}_{k,n}(F_0(Y_i), F_1(x))
\]

where $A_n^{(1)} = \{i : \xi_i = 1, i = 1, ..., n\}$, $A_n^{(2)} = A_n^{(1)c}$, $S_n^{(1)} = \sum_{i=1}^{n} \xi_i$, $S_n^{(2)} = n - S_n^{(1)}$ and $c_{k,n}$ is the Bernstein copula density based on data $\{(X_i, Y_i)\}_{i \in A_n^{(2)}}$. Thus conditionally upon the ξ_i's the observations used in the copula density estimator are independent of the observations used in the regression-part of $\hat{m}_n(\xi)$. The strategy is the following. Given almost any sequence of $\{\xi_i\}_{i=1}^{\infty}$ we show the asymptotic normality of $n^{1/2}k^{-1/4}(\hat{m}_n(\xi) - m(x))$ for an arbitrary but fixed value of x.

For illustration, we consider the example given in (Dette, Van Hecke, and Volgushev 2014). This example will be consider in Section 4. In Figure 1 we see that the Bernstein copula estimator and the semiparametric methods proposed by (Noh, Anouar, and Bouezmarni 2013), based on normal and Student copula, of the first regression model fit well the underlying function. But, for the second model the the semiparametric fails where the Bernstein copula based estimator fits well the regression function. In (Dette, Van Hecke, and Volgushev 2014) the second model is fitted with Frank and mixture of normal copula and both provide a bad estimator.
3 Main results

Here we study the asymptotic properties of the regression estimator using Bernstein estimator for copula densities. The following proposition states the almost sure convergence of the proposed estimator. The following assumptions are required:
Assumption A:

(A.1) The density copula function c has a continuous second-derivative.

(A.2) $k \equiv k_n \sim n^\alpha$, $2/(d + 4) < \alpha < 1/2$.

(A.3) (i) $\mathbb{E}|Y|^p < \infty$, ($p \geq 3$) (ii) $\mathbb{E}|Yc_0(F_0(Y), F_1(x))|$ is finite and $\mathbb{E}|Yc_1(F_0(Y), F_1(x))|$ is finite, where $c_0(u, v) = \partial c(u, v)/\partial u$ and $c_1(u, v) = \partial c(u, v)/\partial v$ (iii) $yF_0(y)(1 - F_0(y))$ tends to zero when y converges to infinity and (iv) $\int_0^1 (u(1 - u))/f_0(F_0^{-1}(u))$ is finite.

Proposition 3.1. Under Assumptions (A.1), (A.2) and (A.3), we have

$$\sup_x |\hat{m}_n^{(\ell)}(x) - m(x)| \xrightarrow{a.s.} 0, \text{ when } n \to \infty.$$ \hspace{1cm} (8)

The following theorem provides the asymptotic normality of the estimator for $d = 1$ case.

Theorem 3.2. Let \hat{m} the regression estimator based on Bernstein copula. Under Assumption (A.1), (A.2) and (A.3), we have, for x such that $0 < F_1(x) < 1$ and $d = 1$,

$$\sqrt{n k^{-1/2}} (\hat{m}_n^{(\ell)}(x) - m(x)) \xrightarrow{d} N(0, \sigma^2), \text{ when } n \to \infty.$$ \hspace{1cm} (9)

where

$$\sigma^2 = \frac{1}{\sqrt{4\pi F_1(x)(1 - F_1(x))}} \left\{ \int_0^1 (F_0^{-1}(u))^2 c(u, F_1(x))du - \left(\int_0^1 (F_0^{-1}(u))c(u, F_1(x))du \right)^2 \right\}.$$ \hspace{1cm} \square

The following theorem provides the asymptotic normality of the estimator for $d > 1$ case. For that, we consider the following notations:

$$\alpha(x) = \sqrt{(4\pi)^d \prod_{j=1}^d F_j(x_j)(1 - F_j(x_j))}$$

and

$$\beta(x) = \left\{ \int_0^1 (F_0^{-1}(u))^2 c(u, F_1(x_1), ..., F_d(x_d))du - \left(\int_0^1 (F_0^{-1}(u))c(u, F_1(x_1), ..., F_d(x_d))du \right)^2 \right\}.$$
Theorem 3.3. Let \(\hat{m} \) the regression estimator based on Bernstein copula. Under Assumption (A.1), (A.2) and (A.3), we have, for \(x \) such that \(0 < F_j(x_j) < 1, j = 1, \ldots, d \) and \(d > 1 \),

\[
\sqrt{n}k^{-d/2}(\hat{m}_n^{(t)}(x) - m(x)) \xrightarrow{d} N(0, \sigma^2), \quad \text{when} \quad n \to \infty. \tag{10}
\]

where

\[
\sigma^2 = \frac{1}{(c^X(x))^2 \alpha(x) \beta(x)}
\]

Remark 1. To estimate the asymptotic variance of the regression estimator \(\hat{m}_n^{(t)} \), it suffices to estimate \(c^X(x) \) (in the case of multiple covariate), \(\alpha(x) \) and \(\beta(x) \). We propose to estimate \(c^X(x) \) by Bernstein copula density estimator and \(\alpha(x) \) by

\[
\alpha(n, x) = \left(\frac{4\pi}{d}\right)^{d/2} \prod_{j=1}^{d} F_{nj}(x_j)(1 - F_{nj}(x_j)).
\]

We can see that \(\beta(x) \) can be rewritten as follows

\[
\beta(x) = \int t^2 c(F_0(t), F_1(x))f_0(t)dt - \left(\int tc(F_0(t), F_1(x))f_0(t)dt\right)^2.
\]

Hence, a consistent estimator of \(\beta(x) \) is given by

\[
\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i^2 c_{k,n}(F_{n0}(Y_i), F_{1n}(x)) - \left(\frac{1}{n} \sum_{i=1}^{n} Y_i c_{k,n}(F_{n0}(Y_i), F_{1n}(x))\right)^2.
\]

Remark 2. If \(j \)th component of \(x \) is in extreme region, that is \(F_j(x_j) \) is close to zero or one, \(\alpha(x) \) is too small and then the variance is too large. To overcome this problem, we suggest to a local bandwidth following the idea given in (Omelka, Gijbels, and Veraverbeke 2009).
4 Monte Carlo Simulations

In this section we study the finite sample behavior of our proposed nonparametric copula regression estimator. The first data generating process is especially motivated by (Dette, Van Hecke, and Volgushev 2014), who studied the performance of the semiparametric copula regression estimator by (Noh, Anouar, and Bouezmarni 2013) in a relatively simple model under misspecification. Therefore suppose that $(X_i, Y_i), i = 1, ..., n$, are independent and identically distributed random variables with $X_i \sim U[0, 1]$ and $Y_i = (X_i - 0.5)^2 + \sigma \varepsilon_i$, where $\sigma > 0$ and ε_i are also independent and identically distributed such that $\varepsilon_i \sim \mathcal{N}(0, 1)$. (Dette, Van Hecke, and Volgushev 2014) found very unpleasant results for the semiparametric copula regression estimator when the copula family is not correctly specified. Especially they showed that in models where the regression function is not strictly monotone over the considered interval, the semiparametric estimator still yields monotone estimates for most of the common parametric copula families. This is the motivation for us to test the performance of our new proposed nonparametric estimator in this nonlinear regression model due to its robustness towards misspecification. At first we set $n = 500$, $k = 25$ and $\sigma = 0.01$ and evaluated the performance of our regression estimator.

The next interesting question was to compare the performance of the copula regression estimator to the performance of standard nonparametric regression estimators like local polynomial estimators. We chose the well-known Nadaraya Watson estimator as well as the local linear estimator. We considered again the parabola model where we now chose $n = 100$, $k = 15$ and $\sigma = 0.05$. The bandwidths for the Nadaraya Watson and the local linear estimator were chosen by a Least Squares cross-validation method (LSCV). It is well known that the local linear estimator has preferable properties compared to the Nadaraya Watson estimator, due to its better performance near the boundary and also due to the independence of the asymptotic bias of the first derivative of the unknown regression function m.

Figure 2: Observations in blue, Bernstein copula regression estimator in black ($\text{MSE} \approx 1.43 \times 10^{-4}$) and true regression function in red.

(a) True regression function in red, Nadaraya Watson estimator in green ($\text{MSE} \approx 6.63 \times 10^{-4}$) and Bernstein copula regression estimator in black ($\text{MSE} \approx 3.69 \times 10^{-4}$)

(b) True regression function in red, local linear estimator in purple
The next two examples originate from (Noh, Anouar, and Bouezmarni 2013). Therefore let (X_i, Y_i), $i = 1, ..., n$, be independent and identically distributed random variables such that $X_i \sim \mathcal{N}(0, 1)$, $Y_i \sim \mathcal{N}(1, 1)$ and $(F_Y(Y), F_X(X)) \sim$Gauss-Copula with parameter $\rho = 0, 6$. In this case the conditional expectation can be described as $m(x) = E[Y_i | X_i = x] = 1 + 0, 6x$. We set $n = 500$, $k = 25$ and checked the performance on the interval $[0, 2]$.

The last simulation example contains a misspecified model. We keep the setting up, such that $X_i \sim \mathcal{N}(0, 1)$, $Y_i \sim \mathcal{N}(1, 1)$ and $(F_Y(Y), F_X(X)) \sim$Gauss-Copula with parameter $\rho = 0, 6$. We want to compare the performance of the nonparametric estimator with the performance of a misspecified semiparametric regression estimator. Therefore, instead of the Gaussian copula density, we make use of the density of a Gumbel copula for the estimation of its unknown parameter via the pseudo maximum likelihood estimator. We again set $n = 500$ and estimated the parameter of the Gumbel copula as $\theta \approx 4, 3$. The resulting estimates are shown in the following figure. We can see that the nonparametric estimator yields a better result due to its robustness towards misspecification.
5 Conclusion

This paper proposes a new method of estimating a regression function based on the Bernstein estimator for the copula density and the empirical distributions for the marginal distributions. The method is fully non-parametric and easy to implement. We prove the almost sure convergence and the asymptotic normality of the estimator by providing the asymptotic variance. Simulations results shows the performance of the estimator. The comparison of the proposed estimator and the investigation of the optimal bandwidth is left for future research.
Appendix

6 Auxiliary lemma

Proof of Proposition 3.1 We start by

\[
\hat{n}_n^{(\ell)}(x) = \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i c_{k,n}^{(\ell)}(F_{n0}(Y_i), F_{1n}(x))
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i c(F_{n0}(Y_i), F_{1n}(x))
\]

\[
+ \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i c_{k,n}^{(\ell)}(F_{n0}(Y_i), F_{1n}(x)) - \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i c(\hat{F}_0(Y_i), \hat{F}_1(x))
\]

=: \ I_n + R_n

From (Bouezmarni, Rombouts, and Taamouti 2010) and Assumption (A.1), (A.2), (A.3)(i), we have

\[
|R_n| \leq \sup_i |c_{k,n}^{(\ell)}(F_{n0}(Y_i), F_{1n}(x)) - c(F_{n0}(Y_i), F_{1n}(x))| \left(\frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} |Y_i| \right)
\]

\[
= o(1), \ a.s.
\]

Analogously to the proof of (Noh, Anouar, and Bouezmarni 2013) we define \(\tilde{u}_{i,0} := F_0(Y_i) + t(F_{n0}(Y_i) - F_0(Y_i)), t \in [0, 1] \) respectively \(\tilde{u}_1 := F_1(x) + t(F_{1n}(x) - F_1(x)), t \in [0, 1] \). Using a Taylor expansion of the first order we can conclude that

\[
I_n = \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i c(F_0(Y_i), F_1(x)) + (F_{n0}(Y_i) - F_0(Y_i)) c_0(\tilde{u}_{i,0}, \tilde{u}_1) + (F_{1n}(x) - F_1(x)) c_1(\tilde{u}_{i,0}, \tilde{u}_1)
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i c(F_0(Y_i), F_1(x)) + \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i (F_{n0}(Y_i) - F_0(Y_i)) c_0(F_0(Y_i), F_1(x))
\]

\[
+ \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i [(F_{1n}(x) - F_1(x)) c_1(F_0(Y_i), F_1(x))] + R1 + R2
\]

We start with the residual terms. Using the Assumption (A.1) and (A.3)(i), we derive:

\[
|R_1| \leq \sup_i |F_{n0}(Y_i) - F_0(Y_i)| \sup_i |c_0(\tilde{u}_{i,0}, \tilde{u}_1) - c_0(F_0(Y_i), F_1(x))| \left(\frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} |Y_i| \right)
\]

\[
= o(1), \ a.s.
\]
and

\[|R_2| \leq \sup_i |F_{1n}(x) - F_1(x)| \sup_i |c_1(\bar{u}_{i,0}, \bar{u}_1) - c_1(F_0(Y_i), F_1(x))| \left(\frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} |Y_i| \right) \]

\[= o(1), \ a.s. \]

We examine the second and the third term and this yields using Assumption (A.3)(ii) and (A.3)(iii)

\[\left| \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i (F_{n0}(Y_i) - F_0(Y_i)) c_0(F_0(Y_i), F_1(x)) \right| \leq \sup_i |F_{n0}(Y_i) - F_0(Y_i)| \left(\frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} |Y_i c_0(F_0(Y_i), F_1(x))| \right) \]

\[\approx \sup_i |F_{n0}(Y_i) - F_0(Y_i)| \mathbb{E} \left[|Y c_0(F_0(Y), F_1(x))| \right] \]

\[= o(1), \ a.s. \]

and

\[\left| \frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i (F_{1n}(x) - F_1(x)) c_1(F_0(Y_i), F_1(x)) \right| \leq \sup_i |F_{1n}(x) - F_1(x)| \left(\frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} |Y_i c_1(F_0(Y_i), F_1(x))| \right) \]

\[\approx \sup_i |F_{1n}(x) - F_1(x)| \mathbb{E} \left[|Y c_1(F_0(Y), F_1(x))| \right] \]

\[= o(1), \ a.s. \]

Now, it is easy to see that the first term is

\[\frac{1}{S_n^{(1)}} \sum_{A_n^{(1)}} Y_i [c(F_0(Y_i), F_1(x))] = \mathbb{E}[Y c(F_0(Y), F_1(x))] + o(1), \ a.s. \quad (12) \]

Using these results we can finally conclude the proof of Proposition 3.1.

Before showing the asymptotic normality of the nonparametric regression estimator based on Bernstein copula density estimator at point \(x \) where \(0 < F_1(x) < 1 \), we recall an interesting result given in Lemma 1 of (Janssen, Swanepoel, and Verbeke 2014) which states that for any fixed \(0 < v < 1 \) we have

\[\sum_{l=0}^{k} \left| P_{l,k}(v) \right| \sim \mathcal{O} \left(\frac{k^{1/2}}{\sqrt{v(1-v)}} \right). \quad (13) \]
We now investigate the asymptotic representation this sum when \(v = v_n \) is a sequence. First notice that if \(v_n \to v > 0 \), then the approximation (13) still holds. We explore the case where \(v_n \searrow 0 \). The case \(v_n \nearrow 1 \) can be dealt similarly.

Suppose \(kv_n \to \infty \). Mimicking the proof in (Janssen, Swanepoel, and Verbeke 2014) for a sequence \(v_n \) going down to zero, one gets that

\[
\sum_{l=0}^{k} |P'_{l,k}(v_n)| = \frac{2}{v_n(1-v_n)}([kv_n] + 1)\left(\frac{k}{[kv_n] + 1}\right)v_n^{[kv_n]+1}(1-v_n)^{k-[kv_n]}.
\]

If \(kv_n \) goes to infinity one can still use stirling formula to obtain that

\[
\sum_{l=0}^{k} |P'_{l,k}(v_n)| \sim \sqrt{\frac{2}{\pi}} \frac{k^{1/2}}{\sqrt{v_n(1-v_n)}}.
\]

However, if \(kv_n \to K > 0 \). Again mimicking the proof of (Janssen, Swanepoel, and Verbeke 2014) for a sequence \(v_n \) satisfying such a condition one gets that

\[
\sum_{l=0}^{k} |P'_{l,k}(v_n)| \leq \frac{2(K+1)}{v_n(1-v_n)}.
\]

Also, if \(kv_n \to 0 \), since, for large enough \(k \), \(kv_n < \frac{1}{2} \) then \([kv_n] = 0 \) and therefore

\[
\sum_{l=0}^{k} |P'_{l,k}(v_n)| = \frac{2}{(1-v_n)}k(1-v_n)^k
\]

\[
= \mathcal{O}(k).
\]

One can summaries the previous development in the following lemma.

Lemma 1. Let \(v_n \) be a sequence such that \(v_n \in [0,1] \) for all \(n \in \mathbb{N} \), and \(v_n \to v \in [0,1] \).

1. If \(v > 0 \), then

\[
\sum_{l=0}^{k} |P'_{l,k}(v_n)| \sim \mathcal{O}\left(\frac{k^{1/2}}{\sqrt{v(1-v)}}\right)
\]

2. If \(v_n \searrow 0 \) or \(v_n \nearrow 1 \) then

\[
\sum_{l=0}^{k} |P'_{l,k}(v_n)| \sim \mathcal{O}(k).
\]
Proof of Theorem 3.2 First notice that

$$c_{k,n}(u,v) = \sum_{l=0}^{k} \sum_{h=0}^{k} C_n(l/k, h/k)P'_{k,l}(u)P'_{k,h}(v)$$ \hspace{1cm} (14)$$

where C_n is the empirical copula estimator. Next, following the idea of (Janssen, Swanepoel, and Ververbeke 2014), since the copula C is differentiable with respect to each of its arguments:

$$C_n(u,v) = C(u,v) + \left(\frac{1}{n} \sum_{i=1}^{n} \kappa_i(u,v) - C(u,v) \right) + C^{(1)}(u,v) \left(\frac{1}{n} \sum_{i=1}^{n} \kappa_i(u,1) - u \right) + C^{(2)}(u,v) \left(\frac{1}{n} \sum_{i=1}^{n} \kappa_i(1,v) - v \right)$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \zeta_{i,n}(u,v)$$ \hspace{1cm} (15)$$

where

$$\zeta_{i,n}(u,v) = \hat{\kappa}_i(u,v) - \kappa_i(u,v) - C^{(1)}(u,v)(\kappa_i(1,v) - C(u,v)) - C^{(2)}(u,v)(\kappa_i(1,v) - v)$$ \hspace{1cm} (16)$$

Plugging (15) into (14) leads to

$$c_{k,n}(u,v) = \sum_{z=0}^{4} c^{(z)}_{k,n}(u,v)$$ \hspace{1cm} (17)$$

where

$$c^{(0)}_{k,n}(u,v) = \sum_{l=0}^{k} \sum_{h=0}^{k} C(l/k, h/k)P'_{k,l}(u)P'_{k,h}(v)$$

$$c^{(1)}_{k,n}(u,v) = \frac{1}{n} \sum_{i=1}^{n} \sum_{l=0}^{k} \sum_{h=0}^{k} (\kappa_i(l/k, h/k) - C(l/k, h/k))P'_{k,l}(u)P'_{k,h}(v)$$

$$c^{(2)}_{k,n}(u,v) = \frac{1}{n} \sum_{i=1}^{n} \sum_{l=0}^{k} \sum_{h=0}^{k} C^{(1)}(l/k, h/k)(\kappa_i(l/k, 1) - l/k)P'_{k,l}(u)P'_{k,h}(v)$$

$$c^{(3)}_{k,n}(u,v) = \frac{1}{n} \sum_{i=1}^{n} \sum_{l=0}^{k} \sum_{h=0}^{k} C^{(2)}(l/k, h/k)(\kappa_i(1, h/k) - h/k)P'_{k,l}(u)P'_{k,h}(v)$$

$$c^{(4)}_{k,n}(u,v) = \frac{1}{n} \sum_{i=1}^{n} \sum_{l=0}^{k} \sum_{h=0}^{k} \zeta_{i,n}(l/k, h/k)P'_{k,l}(u)P'_{k,h}(v).$$ \hspace{1cm} (18)$$

In order to match the setup of the last section one can simply replace the correspondents indices in $c^{(k)}_{m,n}$ for k from 0 to 4 by those of $A^{(2)}_n$ to obtain $c^{(\xi_i)}_{k,n}, j = 0, 1, 2, 3, 4$. Finally, we
replace the decomposition (18) in \(\hat{m}_n^{(\xi)}(x) \) and get the following decomposition
\[
\hat{m}_n^{(\xi)}(x) = \sum_{j=0}^{4} m_n^{(\xi_j)}(x)
\]
with
\[
\hat{m}_n^{(\xi_j)}(x) = \frac{1}{S_n^{(1)}} \sum_{i \in \mathcal{A}_n^{(1)}} Y_i^{(\xi_j)}(F_0(Y_i), F_1(x)), \quad \text{for } j = 0, 1, 2, 3, 4.
\]

Now, the goal is the derive the asymptotic representation of each of these terms. We prove, in Section 6.1 that \(m_n^{(\xi_0)}(x) \), is asymptotically equal to \(m(x) \). Later, we show, in Section 6.4 (resp. 6.2), that \(\sqrt{n k^{-1/2}} m_n^{(\xi_2)}(x) \) (resp. \(\sqrt{n k^{-1/2}} m_n^{(\xi_2)}(x) \)) are negligible. Finally, we establish in Section 6.3 and 6.5 the asymptotic normality of \(\sqrt{n k^{-1/2}} m_n^{(\xi_1)}(x) + \sqrt{n k^{-1/2}} m_n^{(\xi_3)}(x) \).

6.1 Asymptotic representation of \(m_n^{(\xi_0)}(x) \)

First
\[
m_n^{(\xi_0)}(x) = \frac{1}{S_n^{(1)}} \sum_{i \in \mathcal{A}_n^{(1)}} Y_i \sum_{l=0}^{k} \sum_{h=0}^{k} C(l/k, h/k) P_{k,l}^{(F_0(Y_i))} P_{k,h}^{(F_1(x))}
\]
\[
= \frac{k^2}{S_n^{(1)}} \sum_{i \in \mathcal{A}_n^{(1)}} Y_i \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C((l+1)/k, (h+1)/k) P_{k-1,l}^{(F_0(Y_i))} P_{k-1,h}^{(F_1(x))}
\]

where
\[
\Delta_1 C(l/k, h/k) = C(l/k, h/k) - C((l-1)/k, h/k) - C(l/k, (h-1)/k) + C((l-1)/k, (h-1)/k).
\]

Since \(C \) has a Lebesgue bounded density \(c \), the latter is equal to \(\int_{(l-1)/k}^{l/k} \int_{(h-1)/k}^{h/k} c(u, v) dudv \).

Thus by the mean value theorem
Finally, since 1 and the Bernstein weights sums to 1, yields

$$m_n^{(0)}(x) \approx \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} c\left(\frac{l}{k-1}, \frac{h}{k-1}\right) P_{k-1,l}(F_{0n}(Y_i)) P_{k-1,h}(F_{1n}(x))$$

$$= \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} c\left(\frac{l}{k-1}, \frac{h}{k-1}\right) P_{k-1,l}(F_0(Y_i)) P_{k-1,h}(F_1(x))$$

$$+ \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} c\left(\frac{l}{k-1}, \frac{h}{k-1}\right) \times [P_{k-1,l}(F_{0n}(Y_i)) - P_{k-1,l}(F_0(Y_i))] P_{k-1,h}(F_1(x))$$

$$+ \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} c\left(\frac{l}{k-1}, \frac{h}{k-1}\right) \times [P_{k-1,h}(F_{1n}(x)) - P_{k-1,h}(F_1(x))] P_{k-1,l}(F_0(Y_i))$$

$$= (A) + (B) + (C).$$

(B) and (C) can be treat similarly in the following way. We only show the representation of the term (B). Using the mean value theorem:

$$(B) = \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} c\left(\frac{l}{k-1}, \frac{h}{k-1}\right) P'_{k-1,l}(\eta_{n,i}) P_{k-1,h}(F_1(x))(F_{0n}(Y_i) - F_0(Y_i))$$

where $\eta_{n,i}$ lies between $F_{0n}(Y_i)$ and $F_0(Y_i)$. Since c has bounded derivatives one has

$$(B) = \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \sum_{l=0}^{k-2} \sum_{h=0}^{k-1} c^{(1)}\left(\frac{l}{k-2}, \frac{h}{k-1}\right) P'_{k-2,l}(\eta_{n,i}) P_{k-1,h}(F_1(x))(F_{0n}(Y_i) - F_0(Y_i)).$$

Finally, since $\frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i = \mathcal{O}_p(1)$ \mathbb{P}_ξ-a.s, $c^{(1)}$ is bounded, $\sup_y |F_{0n}(y) - F_0(y)| = \mathcal{O}_p(1/\sqrt{n})$ and the Bernstein weights sums to 1, (B) is $\mathcal{O}_p(n^{-1/2})$. Applying the same strategy to (C) yields

$$m_n^{(0)}(x) = (A) + \mathcal{O}_p(n^{-1/2}).$$

To conclude with $m_n^{(0)}(x)$, notice that

$$(A) = \frac{1}{S_n^{(1)}} \sum_{i \in A_0^{(1)}} Y_i c(F_0(Y_i), F_1(x)) + \mathcal{O}_p(1/k)$$

$$= \mathbb{E}(Yc(F_0(Y_i), F_1(x)) + \mathcal{O}_p(1/\sqrt{n}) + \mathcal{O}_p(1/k) \quad \mathbb{P}_\xi$ - a.s. (21)
Since the norming factor is \(n^{1/2}k^{-1/4} \) the two terms of the right hand side are negligible provided \(k \sim n^\alpha \) with \(\alpha > 2/5 \).

6.2 Asymptotic negligibility of \(m_n^{(\xi_4)}(x) \)

First recall that

\[
m_n^{(\xi_4)}(x) = \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \zeta_{j,n}(l/k, h/k) P_{k,l}(F_{0n}(Y_i)) P_{k,h}(F_{1n}(x))
\]

Denote \(E_A \) the expectation conditionally upon \(\{Y_i : i \in A\} \). One has

\[
E_{A_n^{(1)}} \left(m_n^{(\xi_4)}(x) \right) = \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \mathbb{E} \left(\zeta_{j,n}(l/k, h/k) \right) P_{k,l}(F_{0n}(Y_i)) P_{k,h}(F_{1n}(x))
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \mathbb{E} \left(\zeta_{j,n}(l/k, h/k) - \zeta_{j}(l/k, h/k) \right)
\]

\[
\times P_{k,l}(F_{0n}(Y_i)) P_{k,h}(F_{1n}(x))
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \left(F(F_{0n}^{-1}(l/k), F_{1n}^{-1}(h/k)) - F(F_0^{-1}(l/k), F_1^{-1}(h/k)) \right)
\]

\[
\times P_{k,l}(F_{0n}(Y_i)) P_{k,l}(F_{1n}(x))
\]

\[
= \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \left(F^{(1)}(\eta_{n,0}(l/k), F_{1n}^{-1}(h/k)) [F_{0n}^{-1}(h/k) - F_0^{-1}(h/k)] \right)
\]

\[
\times P_{k,l}(F_{0n}(Y_i)) P_{k,l}(F_{1n}(x))
\]

\[
+ \frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i \frac{1}{S_n^{(2)}} \sum_{l=0}^{k} \sum_{h=0}^{k} \left(F^{(2)}(\eta_{n,1}(l/k), \eta_{n,1}(h/k)) [F_{0n}^{-1}(h/k) - F_1^{-1}(h/k)] \right)
\]

\[
\times P_{k,l}(F_{0n}(Y_i)) P_{k,l}(F_{1n}(x))
\]

where \(\eta_{n,z}(t/k) \) lies between \(F_{zn}^{-1}(t/k) \) and \(F_z^{-1}(t/k) \) for \(z = 0, 1 \). Since \(F^{(1)} \) and \(F^{(2)} \) are uniformly continuous, and since the derivatives of \(F^{(1)}(F_0^{-1}(u), F_1^{-1}(v)) \) and \(F^{(2)}(F_0^{-1}(u), F_1^{-1}(v)) \) with respect to each of their arguments are continuous and uniformly bounded,

\[
\frac{1}{S_n^{(1)}} \sum_{i \in A_n^{(1)}} Y_i = O_p(1) \quad \mathbb{P}_\xi - a.s.
\]

20
and since \([F_{jn}^{-1} - F_{j}^{-1}] = \mathcal{O}_p\left(1/\sqrt{n}\right), j = 0 \text{ or } 1\), one gets that

\[
\mathbb{E}\left(m_n^{(4)}(x)\right) = \mathcal{O}_p\left(1/\sqrt{n}\right) \quad \mathbb{P}_\xi \text{ - a.s.} \quad (22)
\]

Next we calculate the variance of \(m_n^{(4)}(x)\). That is,

\[
\text{Var}\left(m_n^{(4)}(x)\right) = \left(\frac{1}{S_n^{(1)} S_n^{(2)}}\right)^2 \sum_{i,i' \in A_n^{(1)}} \sum_{j,j' \in A_n^{(2)}} \sum_{l,l'=0}^k \sum_{h,h'=0}^k P'_{k,h}(F_n(x)) P'_{k,h'}(F_n(x))
\]
\[
\times \text{Cov}\left(Y_i \zeta_j, n(l/k, h/k), Y_{i'}, \zeta_{j'}, n(l'/k, h'/k), P'_{k,l}(F_0(Y_i)), P'_{k,l'}(F_0(Y_{i'}))\right)
\]

Notice that if simultaneously \(i \neq i'\) and \(j \neq j'\) then the covariance is 0. We deal the three other cases separately.

Case 1. \(i = i', j \neq j'\).

\[
\frac{k}{S_n^{(1)} S_n^{(2)}} \sum_{l,l'=0}^k \sum_{h,h'=0}^k \mathbb{E}_{A_n^{(1)}} \left(Y_i^{2} P'_{k,l}(F_0(Y_i)) \zeta_j, n(l/k, h/k), \zeta_{j'}, n(l'/k, h'/k), P'_{k,l'}(F_0(Y_{i'}))\right)
\]
\[
\times P'_{k,h}(F_n(x)) P'_{k,h'}(F_n(x))
\]
\[
= Y_i^2 \left(\sum_{l=0}^k \sum_{h=0}^k \mathbb{E}\left(\zeta_j, n(l/k, h/k), P'_{k,l}(F_0(Y_i)), P'_{k,h}(F_n(x))\right)\right)^2
\]
\[
= Y_i^2 \times \mathcal{O}_p\left(1/n\right) \quad (23)
\]

which implies that

\[
\left(\frac{1}{S_n^{(1)} S_n^{(2)}}\right)^2 \sum_{i \in A_n^{(1)}} \sum_{j,j' \in A_n^{(2)}, j \neq j'} \sum_{l,l'=0}^k \sum_{h,h'=0}^k P'_{k,h}(F_n(x)) P'_{k,h'}(F_n(x))
\]
\[
\times \text{Cov}\left(Y_i \zeta_j, n(l/k, h/k), Y_{i'}, \zeta_{j'}, n(l'/k, h'/k), P'_{k,l}(F_0(Y_i)), P'_{k,l'}(F_0(Y_{i'}))\right)
\]
\[
\sim \mathcal{O} \left(1/n^2\right) \quad \mathbb{P}_\xi \text{ - a.s} \quad (24)
\]

since \(S_n^{(2)} / n \stackrel{P}{\rightarrow} 1/2\) by the strong law of large numbers.

Case 2. \(i \neq i', j = j'\).
We first need to compute
\[
\sum_{l,l' = 0}^{k} \sum_{h,h' = 0}^{k} \mathbb{E}_{A^l_{n}} \left(Y_i'^J P'_{k,l}(F_{0n}(Y_i)) \zeta_{j,n}(l/k, h/k)^2 P'_{k,l'}(F_{0n}(Y_i')) \right)
\times P'_{k,h}(F_{1n}(x)) P'_{k,h'}(F_{1n}(x))
\leq |Y_i Y_i'| \left(\sum_{l = 0}^{k} |P'_{k,l}(F_{0n}(Y_i))| \right) \times \left(\sum_{h = 0}^{k} |P'_{k,h}(F_{0n}(Y_i'))| \right)
\times \left(\sum_{h = 0}^{k} |P'_{k,h}(F_{1n}(x))| \right)^2 \mathcal{O}_p \left(n^{-3/2} \right)
\] (25)

from the fact that \(\sup_{u,v} |\zeta_{j,n}(u, v)| \sim \mathcal{O}_p \left(n^{-3/4} \right)\), see (Janssen, Swanepoel, and Ververbeke 2014). From the continuous mapping theorem together with lemma 13-1 combined with the fact that \(F_1(x)(1 - F_1(x)) > 0\):

\[
\sum_{h = 0}^{k} |P'_{k,h}(F_{1n}(x))| \sim \mathcal{O} \left(k^{1/2} \right).
\] (27)

Next, since one has no control over the values of \((F_{0n}(Y_i))\) one has to use lemma 13-2 to conclude that

\[
\sum_{l = 0}^{k} |P'_{k,l}(F_{0n}(Y_i))| \sim \mathcal{O}_p \left(k \right).
\] (28)

Thus

\[
\frac{1}{\mathcal{O}_n^{(1)} \mathcal{O}_n^{(2)}}^2 \sum_{i,i' \in A_1^{(l)}} \sum_{j,j' \in A_2^{(l)}} \sum_{l,l' = 0}^{k} \sum_{h,h' = 0}^{k} P'_{k,h}(F_{1n}(x)) P'_{k,h'}(F_{1n}(x))
\times \text{Cov} \left(Y_i' \zeta_{j,n}(l/k, h/k) P'_{k,l}(F_{0n}(Y_i)), Y_i' \zeta_{j,n}(l'/k, h'/k) P'_{k,l'}(F_{0n}(Y_i')) \right)
\sim \mathcal{O}_p \left(k^3/n^{5/2} \right) \mathbb{P}_\xi - \text{a.s.}
\] (29)

Similarly, if \(i = i'\) and \(j = j'\) one gets the bound \(\mathcal{O}_p \left(k^3/n^{7/2} \right) \mathbb{P}_\xi - \text{a.s.}\) Combining the three previous results yields

\[
\mathbb{V} \left(m_n^{(\xi 4)}(x) \right) = \mathcal{O}_p \left(k^3/n^{5/2} \right) + \mathcal{O}_p \left(1/n^2 \right) \mathbb{P}_\xi - \text{a.s.}
\] (30)

Equation (30) together with the factor \(n^{1/2}k^{-1/4}\) yields the negligibility of \(m_n^{(\xi 4)}(x)\) provided \(k^{5/2}n^{-3/2} \to 0\), that is, \(k \sim n^\alpha, \alpha < 3/5\).
6.3 Asymptotic representation of $m_{n}^{(x)}(x)$

Recall that

$$m_{n}^{(x)}(x) = \frac{k^2}{S_{n}^{(2)}} \sum_{i \in A_{n}^{(1)}} Y_{i} \sum_{j \in A_{n}^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}(l, h) \left(\frac{\Delta_{1}(\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k}))}{\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k})} - C(\frac{l+1}{k}, \frac{h+1}{k}) \right)$$

$$\times P_{k-1,l}(F_{0n}(Y_{i})) P_{k-1,h}(F_{1n}(x)).$$

The first step is to investigate the effect of replacing the estimated marginals F_{0n} and F_{1n} by the true ones in the Bernstein weights. To do this denote

$$\tilde{m}_{n}^{(x)}(x) = \frac{k^2}{S_{n}^{(2)}} \sum_{i \in A_{n}^{(1)}} Y_{i} \sum_{j \in A_{n}^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}(l, h) \left(\frac{\Delta_{1}(\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k}))}{\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k})} - C(\frac{l+1}{k}, \frac{h+1}{k}) \right)$$

$$\times P_{k-1,l}(F_{0n}(Y_{i})) P_{k-1,h}(F_{1}(x)).$$

(31)

Now

$$m_{n}^{(x)}(x) - \tilde{m}_{n}^{(x)}(x) = \frac{k^2}{S_{n}^{(2)}} \sum_{i \in A_{n}^{(1)}} Y_{i} \sum_{j \in A_{n}^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}(l, h) \left(\frac{\Delta_{1}(\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k}))}{\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k})} - C(\frac{l+1}{k}, \frac{h+1}{k}) \right)$$

$$\times [P_{k-1,l}(F_{0n}(Y_{i})) - P_{k-1,l}(F_{0}(Y_{i}))] P_{k-1,h}(F_{1}(x))$$

$$+ \frac{k^2}{S_{n}^{(2)}} \sum_{i \in A_{n}^{(1)}} Y_{i} \sum_{j \in A_{n}^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}(l, h) \left(\frac{\Delta_{1}(\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k}))}{\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k})} - C(\frac{l+1}{k}, \frac{h+1}{k}) \right)$$

$$\times [P_{k-1,h}(F_{1n}(x)) - P_{k-1,h}(F_{1}(x))] P_{k-1,l}(F_{0n}(Y_{i}))$$

$$= A_{n}(x) + B_{n}(x).$$

(32)
It is clear that both \(\mathbb{E}(A_n(x)) \) and \(\mathbb{E}(B_n(x)) \) are 0. Next,

\[
\mathbb{E}_{A_n^{(1)}}(A_n(x)^2) = \left(\frac{k^2}{S_n^{(1)} S_n^{(2)}} \right)^2 \sum_{i,i' \in A_n^{(1)}} Y_i Y_{i'} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C(\frac{l+1}{k}, \frac{h+1}{k}) P_{k-1,h}(F_1(x))^2 \times [P_{k-1,l}(F_0(Y_i)) - P_{k-1,l}(F_0(Y_{i'}))] \\
+ \left(\frac{k^2}{S_n^{(1)} S_n^{(2)}} \right)^2 \sum_{i \in A_n^{(1)}} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C(\frac{l+1}{k}, \frac{h+1}{k}) P_{k-1,h}(F_1(x)) \times [P_{k-1,l}(F_0(Y_{i'})) - P_{k-1,l}(F_0(Y_i))] \\
\times [P_{k-1,l}(F_0(Y_i)) - P_{k-1,l}(F_0(Y_i))]
\]

\[
A_{1n}(x) = A_{2n}(x).
\]

Again using the mean value theorem

\[
A_{1n}(x) = \left(\frac{k^2}{S_n^{(1)} S_n^{(2)}} \right)^2 \sum_{i,i' \in A_n^{(1)}} Y_i Y_{i'} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C(\frac{l+1}{k}, \frac{h+1}{k}) P_{k-1,h}(F_1(x))^2 \times [P_{k-1,l}(\eta_{n,i}) P_{k-1,l}(\eta_{n,i'})] [F_0(Y_i) - F_0(Y_{i'})] \times [F_0(Y_{i'}) - F_0(Y_{i'})]
\]

where \(\eta_{n,z} \) lies between \(F_0(Y_z) \) and \(F_0(Y_z) \). Because of lemma 2 of (Janssen, Swanepoel, and Verweybeke 2014), and since \(C \) has bounded second order derivative:

\[
A_{1n}(x) = k^{5/2} \left(\frac{1}{S_n^{(1)}} \right)^2 \sum_{i,i' \in A_n^{(1)}} Y_i Y_{i'} \sum_{j \in A_n^{(2)}} \sum_{l=0}^{k-1} \Delta_1 C(\frac{l+1}{k}, F_1(x)) \times [P_{k-1,l}(\eta_{n,i}) P_{k-1,l}(\eta_{n,i'})] [F_0(Y_i) - F_0(Y_{i'})] \times [F_0(Y_{i'}) - F_0(Y_{i'})] + \mathcal{O}(k^{-1}).
\]

Next we need to break \(A_{1n}(x) \) into 3 cases, according to the values of \(F_0(Y_i) \) and \(F_0(Y_{i'}) \).
First, according to lemma 13:

\[
A^{(1)}_{1n}(x) = k^{5/2} \left(\frac{1}{S^{(1)}_n} \right)^2 \frac{1}{S^{(2)}_n} \sum_{i \neq i' \in A^{(1)}_n} Y_i Y_{i'} \mathbb{1} \left(|F_0(Y_i) - F_0(Y'_i)| < k^{-1/2+\epsilon/3}, F_0(Y_i) < k^{-1/2+2\epsilon/3} \right)
\]

\[
\times \sum_{l=0}^{k-1} \Delta c(F_1(x), \frac{h + 1}{k}) \times P'_{k-1,l}(\eta_{n,i}) P'_{k-1,l}(\eta_{n,i'})
\]

\[
\times [F_{0n}(Y_i) - F_0(Y_i)] \times [F_{0n}(Y_i') - F_0(Y_i')]
\]

\[
+ k^{5/2} \left(\frac{1}{S^{(1)}_n} \right)^2 \frac{1}{S^{(2)}_n} \sum_{i \in A^{(1)}_n} Y_i \sum_{l=0}^{k-1} \Delta c(F_1(x), \frac{h + 1}{k}) \times P'_{k-1,l}(\eta_{n,i})^2 \times [F_{0n}(Y_i) - F_0(Y_i)]^2
\]

\[
\leq 2n^{-1} k^{7/2} \left(\frac{1}{S^{(1)}_n} \right)^2 \frac{1}{S^{(2)}_n} \|c\|_{\infty}
\]

\[
\times \sum_{i \neq i' \in A^{(1)}_n} |Y_i Y_{i'}| \mathbb{1} \left(|F_0(Y_i) - F_0(Y'_i)| < k^{-1/2+\epsilon/3}, F_0(Y_i) < k^{-1/2+2\epsilon/3} \right)
\]

\[
+ k^{3/2} \left(\frac{1}{S^{(1)}_n} \right)^2 \left\{ \frac{1}{S^{(2)}_n} \sum_{i \in A^{(1)}_n} Y_i^2 \right\} \times 2k^2 n^{-1} \|c\|_{\infty}.
\]

Taking the expectation with respect to the \(Y_i, i \in A^{(1)}_n\) and since \(\mathbb{E}(|Y_i|^p) < \infty\), using holder inequality with \(p\) and \(q = p/(p-1)\):

\[
\mathbb{E}\left(A^{(1)}_{1n}(x)\right) \leq 2k^{7/2} n^{-1} \frac{1}{S^{(2)}_n} \|c\|_{\infty} \mathbb{E}(|Y_i|)^{1/p}
\]

\[
\times \mathbb{P} \left(|F_0(Y_i) - F_0(Y'_i)| < k^{-1/2+\epsilon/3}, F_0(Y_i) < k^{-1/2+2\epsilon/3} \right)^{(p-1)/p}
\]

\[
+ O \left(k^{7/2} n^{-3} \right) \quad \mathbb{P}_\xi - a.s
\]

\[
\leq 2k^{7/2} n^{-1} \frac{1}{S^{(2)}_n} \|c\|_{\infty} \mathbb{E}(|Y_i|)^{1/p} \times k^{\frac{p-1}{p}(-1+\epsilon)}
\]

(35)

25
Next using lemma 13 again:

\[A_{1n}^{(2)}(x) = k^{5/2} \left(\frac{1}{S_n^{(1)}} \right)^{2} \frac{1}{S_n^{(2)}} \sum_{i,i' \in A_n^{(1)}} Y_i Y_{i'} \mathbb{I} \left(|F_0(Y_i) - F_0(Y_i')| < k^{-1/2+\epsilon/3}, F_0(Y_i) > k^{-1/2+2\epsilon/3} \right) \]

\[\times \sum_{l=0}^{k-1} \Delta_1 c(F_1(x), \frac{h+1}{k}) \times P'_{k-1,l}(\eta_{n,i}) P'_{k-1,l}(\eta_{n,i'}) \]

\[\times [F_0n(Y_i) - F_0(Y_i)] \times [F_0n(Y_i') - F_0(Y_i')] \]

\[+ k^{5/2} \left(\frac{1}{S_n^{(1)}} \right)^{2} \frac{1}{S_n^{(2)}} \sum_{i \in A_n^{(1)}} Y_i^2 \sum_{l=0}^{k-1} \Delta_1 c(F_1(x), \frac{h+1}{k}) \times P'_{k-1,l}(\eta_{n,i})^2 \times [F_0n(Y_i) - F_0(Y_i)]^2 \]

\[\leq 2k^{3/2-2\epsilon/3}n^{-1}k^{3/2} \left(\frac{1}{S_n^{(1)}} \right)^{2} \frac{1}{S_n^{(2)}} ||c||_\infty \]

\[\times \sum_{i \neq i' \in A_n^{(1)}} |Y_i Y_{i'}| \mathbb{I} \left(|F_0(Y_i) - F_0(Y_i')| < k^{-1/2+\epsilon/3}, F_0(Y_i) < k^{-1/2} + 2\epsilon/3 \right) \]

\[+ k^{3/2} \left(\frac{1}{S_n^{(1)}} \right)^{2} \left\{ \frac{1}{S_n^{(2)}} \sum_{i \in A_n^{(1)}} Y_i^2 \right\} \times 2k^2n^{-1} ||c||_\infty. \quad (36) \]

Thus

\[\mathbb{E} \left(A_{1n}^{(2)}(x) \right) \leq 2k^{3-2\epsilon/3} \frac{1}{S_n^{(2)}} ||c||_\infty \mathbb{E} (Y^p)^{1/p} \]

\[\times \mathbb{P} \left(|F_0(Y_i) - F_0(Y_i')| < k^{-1/2+\epsilon/3}, F_0(Y_i) > k^{-1/2+2\epsilon/3} \right)^{(p-1)/p} \]

\[+ \mathcal{O} \left(k^{7/2}n^{-3} \right) \quad \mathbb{P}_\xi - \text{a.s} \]

\[\leq 2k^{3-2\epsilon/3} \frac{1}{S_n^{(2)}} ||c||_\infty \mathbb{E} (Y^p)^{1/p} \left[k^{\frac{p-1}{p}}(\epsilon/3-1/2) + \mathcal{O} \left(k^{7/2}n^{-3} \right) \right] \quad \mathbb{P}_\xi - \text{a.s} \quad (37) \]

Finally, lemma 1.5.3 of (Lorentz 1953) implies that as soon as \(|F_0(Y_i) - F_0(Y_i')| > k^{-1/2+\epsilon/3} \) then

\[\sum_{l=0}^{k} |P'_{k-1,l}(\eta_{n,i}) P'_{k-1,l}(\eta_{n,i'})| \sim \mathcal{O} \left(e^{-k^{2\epsilon/3}} \right). \quad (38) \]

Since

\[\mathbb{E} (A_{1n}(x)) = \mathbb{E} (A_{1n}^{(1)}(x)) + \mathbb{E} (A_{1n}^{(2)}(x)) + \mathcal{O} \left(e^{-k^{2\epsilon/3}} \right) \]

it follows from equations (35),(37) and (38) that

\[\mathbb{E} (A_{1n}(x)) \leq 2 ||c||_\infty \mathbb{E} (Y^p)^{1/p} \left[k^{3n-1} \left\{ k^{1/2+\frac{p-1}{p}(-1+\epsilon)} + k^{\frac{p-1}{p}(\epsilon/3-1/2)} \right\} + \mathcal{O} \left(e^{-m^{2\epsilon/3}} \right) \right] \]

\[+ \mathcal{O} \left(k^{7/2}n^{-3} \right) \quad \mathbb{P}_\xi - \text{a.s} \quad (39) \]
Since the norming factor is $n^{1/2}m^{-1/4}$, the latter is negligible as soon as $m = n^\alpha$ with
\[
\alpha < \min \left\{ \left(3 - \frac{p-1}{p}\right)^{-1}, 2\left(5 - \frac{p-1}{p}\right)^{-1} \right\}
\] (40)
with $p \geq 3$ and by the choice of
\[
\epsilon < \min \left\{ \frac{p}{p-1}(\alpha^{-1} - 3) + 1, \frac{2}{3} \frac{p}{p-1}(2\alpha^{-1} - 5) + 1 \right\}.
\] (41)

The condition $p \geq 3$ guarantees that the bound on α is greater than $2/5$. Next, using
the mean value theorem, since C as bounded density and the Bernstein weights sum to one
combined with lemma 13:
\[
|A_{2n}| \leq \left(\frac{1}{S_{1n}^{(1)}} \right)^2 \frac{1}{S_{1n}^{(2)}} \left\{ \sum_{i \in A_{n}^{(1)}} |Y_i| \|c\|_{\infty} \sum_{l=0}^{k-1} \left| P'_{k-1,l}(\eta_{n,i}) \right| \right\}
\times \left\{ \sum_{i' \in A_{n}^{(1)}} |Y_{i'}| \|c\|_{\infty} \sum_{l=0}^{k-1} \left| P'_{k-1,l}(\eta_{n,i'}) \right| \right\}
\times \left[\sup_{y} |F_{0n}(y) - F_{0}(y)| \right]^2
\leq \frac{k^2}{S_{n}^{(2)}} \left(\frac{1}{S_{1n}^{(1)}} \sum_{i \in A_{n}^{(1)}} |Y_i| \right)^2 \times O \left(n^{-1} \right) \sim O_p \left(k^2n^{-2} \right) \quad \mathbb{P}_{\xi} - \text{a.s.} \quad (42)
\]

Applying the same strategy to $B_{n}(x)$ concludes the negligibility of $m_{n}^{(\xi)}(x) - \tilde{m}_{n}^{(\xi)}(x)$.

$\tilde{m}_{n}^{(\xi)}(x)$ does not involve any estimated marginals in the Bernstein weights. The next step is
to show that the random variable $D_{n}^{(\xi)}(x) = \tilde{m}_{n}^{(\xi)}(x) - \overline{m}_{n}^{(\xi)}(x)$ is asymptotically negligible,
where $\overline{m}_{n}^{(\xi)}(x) = \mathbb{E}_{A_{n}^{(1)}} \left(\tilde{m}_{n}^{(\xi)}(x) \right)$

First notice that one can rewrite
\[
D_{n}^{(\xi)}(x) = \frac{k^2}{S_{n}^{(2)}} \sum_{j \in A_{n}^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}(\kappa_{j}(\frac{l+1}{k}, \frac{h+1}{k}) - C(\frac{l+1}{k}, \frac{h+1}{k}))M_{k-1,l}(n)P_{k-1,h}(F_{1}(x))
\]
where
\[
M_{k-1,l}(n) = \frac{1}{S_{1n}^{(1)}} \sum_{i \in A_{n}^{(1)}} Y_{i}P_{k-1,l}(F_{0}(Y_{i})) - \mathbb{E} \left(YP_{k-1,l}(F_{0}(Y)) \right).
\] (43)

Now
\[
\mathbb{E}_{A_{n}^{(1)}} \left(\left| D_{n}^{(\xi)}(x) \right|^2 \right) = \frac{k^4}{S_{n}^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}C(\frac{l+1}{k}, \frac{h+1}{k})M_{k-1,l}(n)^2P_{k-1,h}(F_{1}(x))^2
\]
\[
+ \frac{k^4}{S_{n}^{(2)}} \left\{ \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_{1}C(\frac{l+1}{k}, \frac{h+1}{k})M_{k-1,l}(n)P_{k-1,h}(F_{1}(x)) \right\}^2 \quad (44)
\]
We need to investigate how big can be the \(M_{k-1,l}(n) \)'s. The expectation of \(M_{k-1,l}(n) \) is 0 for all \(l \) and

\[
\mathbb{E} \left(M_{k-1,l}(n)^2 \right) = \frac{1}{n} \left(\mathbb{E} \left(Y^2 P_{k-1,l}(F_0(Y)) \right)^2 - \mathbb{E} (YP_{k-1,l}(F_0(Y)))^2 \right) \leq \frac{1}{n} \left(\mathbb{E} (Y^2) + \mathbb{E} (|Y|)^2 \right).
\]

(46)

Since \(C \) admits a bounded density \(c \), and since lemma 2 of (Janssen, Swanepoel, and Ververbeke 2014) implies

\[
\sum_{h=0}^{k-1} P_{k-1,h}(F_1(x))^2 \sim \mathcal{O} \left(k^{-1/2} \right)
\]

(47)

one deduces that

\[
\mathbb{E} \left(D_n^{(\xi)}(x)^2 \right) = \mathcal{O}_p \left(k^{5/2} / n^2 \right) + \mathcal{O}_p \left(k^2 / n^2 \right) \quad \mathbb{P}_\xi \text{ a.s.}
\]

(48)

Again the norming factor being \(n^{1/2} k^{-1/4} \) the latter is negligible if \(k \sim n^\alpha, \alpha < 1/2 \). It only remains to show that the random variable \(\bar{m}_n^{(\xi)}(x) \) is normally distributed. To do this we calculate the Lyapunov ratio.

Clearly by Fubini’s theorem \(\mathbb{E} \left(\bar{m}_n^{(\xi)}(x) \right) = 0 \). Now

\[
\mathbb{E} \left(\bar{m}_n^{(\xi)}(x)^2 \right) = \frac{k^4}{S_n^{(2)}} \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C \left(\frac{l+1}{k}, \frac{h+1}{k} \right) \left(\int_0^1 F_0^{-1}(u) P_{k-1,l}(u) du \right)^2 P_{k-1,h}(F_1(x))^2
\]

\[
- \frac{k^4}{S_n^{(2)}} \left\{ \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C \left(\frac{l+1}{k}, \frac{h+1}{k} \right) \left(\int_0^1 F_0^{-1}(u) P_{k-1,l}(u) du \right) P_{k-1,h}(F_1(x)) \right\}^2
\]

\[
= V_n(x) + W_n(x).
\]

If \(\int_0^1 |F_0^{-1}(u)| du < \infty \) then by the dominated convergence theorem:

\[
W_n(x) = \frac{k^4}{S_n^{(2)}} \left\{ \int_0^1 F_0^{-1}(u) \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} \Delta_1 C \left(\frac{l+1}{k}, \frac{h+1}{k} \right) P_{l,k-1}(u) P_{h,k-1}(F_1(x)) du \right\}^2
\]

\[
\leq \frac{1}{S_n^{(2)}} ||c||_\infty \left(\int_0^1 |F_0^{-1}(u)| du \right)^2 + O \left(\frac{k^2}{n} \right) \quad \mathbb{P}_\xi \text{ a.s.}
\]

(49)

On the other hand one has

\[
V_n(x) = V_{1n}(x) + V_{2n}(x),
\]

28
where

$$V_{1n}(x) = \frac{k^4}{S_n^{(2)}} \int_0^1 \int_0^1 \sum_{l,h=0}^{k-1} \Delta_1 C_l^{h+1} h^{-1} k(F_0^{-1}(u))^2 P_{l,k-1} P_{l,k-1} P_{h,k-1} (F_1(x))^2,$$

and

$$V_{2n}(x) = \frac{k^4}{S_n^{(2)}} \int_0^1 \int_0^1 \sum_{l,h=0}^{k-1} \Delta_1 C_l^{h+1} h^{-1} k(F_0^{-1}(u))^2 (F_0^{-1}(v))^2 (v-u) P_{l,k-1} P_{l,k-1} P_{h,k-1} (F_1(x))^2.$$

Now because, $k \int_0^1 P_{l,k-1}(v) dv = 1$ and $\Delta_1 C_l^{h+1} h^{-1} k = \frac{1}{k^2} c l h + \frac{1}{k^2}$ (see Sancetta and Satchell 2004), we have

$$V_{1n}(x) = \frac{k^{1/2}}{2 \sqrt{\pi F_1(x)(1-F_1(x))}} \int_0^1 (F_0^{-1}(u))^2 c(u,F_1(x)) du + o(k^{1/2})$$

and because $(F_0^{-1})'$ and c are finite, we have

$$|V_{2n}(x)| \leq \frac{k^2}{S_n^{(2)}} ||c||_\infty \int_0^1 \int_0^1 |F_0^{-1}(u)||v-u| \sum_{l=0}^{k-1} \sum_{h=0}^{k-1} P_{l,k-1} P_{l,k-1} P_{h,k-1} (F_1(x))^2$$

$$= \frac{k^2}{S_n^{(2)}} ||c||_\infty \int_0^1 \int_0^1 |F_0^{-1}(u)||v-u| (\sum_{k \in A} \sum_{k \in A^c} P_{l,k-1} P_{l,k-1} P_{h,k-1} (F_1(x))^2$$

where

$$A = \{ l, |l/k - u| \leq k^{-\delta} \text{ and } |l/k - v| \leq k^{-\delta}, \text{ where } 1/3 < \delta < 1/2 \}$$

Hence, using again theorem 1.5.3 of (Lorentz 1953) one has

$$|V_{2n}(x)| \leq \frac{k}{S_n^{(2)}} ||c||_\infty k^{-\delta} \left\{ \sum_{k \in A} \int_0^1 |F_0^{-1}(u)| P_{l,k-1}(u) du \right\} \left\{ \int_0^1 k P_{l,k-1}(v) dv \right\} \sum_{h=0}^{k-1} P_{h,k-1}(F_1(x))^2$$

$$+ O \left(e^{-(-1/2-\delta)^2} \right)$$

$$= O \left(\frac{k^{1/2-\delta}}{n} \right) \quad \mathbb{P}_\xi - \text{a.s.}$$

Therefore,

$$\mathbb{E} \left(m_n(\xi_1)(x)^2 \right) = \frac{k^{1/2} n^{-1}}{2 \sqrt{\pi F_1(x)(1-F_1(x))}} \int_0^1 (F_0^{-1}(u))^2 c(u,F_1(x)) du + o \left(\frac{k^{1/2}}{n} \right) + O \left(\frac{k^{1/2-\delta}}{n} \right) \quad \mathbb{P}_\xi - \text{a.s.}$$
Similarly using again lemma 2 of (Janssen, Swanepoel, and Ververbeke 2014) one gets

\[
\mathbb{E}\left(\left(\frac{k^2}{S_n^{(2)}} \int_0^1 F_0^{-1}(u) \sum_{l=0}^{k-1} \sum_{h=0}^{l-1} \Delta_1(\kappa_j(\frac{l+1}{k}, \frac{h+1}{k}) - C(\frac{l+1}{k}, \frac{h+1}{k})) P_{k-1,l}(u) P_{k-1,h}(F_1(x)) \right)^4 \right) \sim \mathcal{O}\left(\frac{k^{3/2}}{n^4} \right) \mathbb{P}_\xi - \text{a.s}
\]

(50)

Thus the Lyapunov condition is satisfied since the Lyapunov ratio is of order \(\mathcal{O}\left(\frac{k^{1/2}}{n} \right) \).

6.4 Asymptotic negligibility of \(m_n^{(\xi_2)}(x) \)

Using similar arguments, we can show that \(\sqrt{n}k^{-1/2} m_n^{\xi_2}(x) \) is negligible.

6.5 Asymptotic representation of \(m_n^{(\xi_3)}(x) \)

Next, similar derivations, and similar treatments of the term (II) as in the proof of (Janssen, Swanepoel, and Ververbeke 2014) leads to

\[
\sqrt{n}k^{-1/2} m_n^{(\xi_3)}(x) = \sqrt{n}k^{-1/2} \overline{m}_n^{(\xi_3)}(x) + o(1) \quad \mathbb{P}_\xi - \text{a.s}
\]

where

\[
\overline{m}_n^{(\xi_1,3)}(x) = \frac{k}{S_n^{(2)}} \sum_{i \in A_n^{(2)}} \int_0^1 \sum_{h=0}^{l-1} \left\{ 1 \left(\frac{h}{k} \leq V_i \leq \frac{h+1}{k} \right) - \frac{1}{k} \right\}
\]

\[
\times \sum_{l=0}^k \int_0^1 \frac{C(\frac{l}{k}, \frac{h}{k-1})}{F_0^{-1}(u)} P_{k,l}(u) P_{k-1,l}(F_1(x)) du.
\]

As for \(\overline{m}_n^{(\xi_1)}(x) \), one shows that the Lyapunov condition is satisfied for \(\sqrt{n}k^{-1/2} \overline{m}_n^{(\xi_3)}(x) \).

One then concludes that

\[
\sqrt{n}k^{-1/2}(\hat{m}_n^{(\xi)}(x) - m(x)) = \sqrt{n}k^{-1/2} \left\{ \overline{m}_n^{(\xi_1)}(x) + \overline{m}_n^{(\xi_1,3)}(x) \right\}.
\]

This consist representation consist in a sum of independent terms which can be shown, with similar development to be normally distributed with mean 0 and variance \(\sigma^2 \).
References

