On the Chebyshev-Halley family of iteration functions

François Dubeau and Calvin Gnang
Département de mathématiques
Faculté des sciences, Université de Sherbrooke
2500, boul. de l’Université, Sherbrooke (Qc), Canada, J1K 2R1
francois.dubeau@usherbrooke.ca

AMS Subject Classification : 65-01, 11B37, 65B99, 65D99, 65H05.

Key Words : Chebyshev, Halley, Super-Halley, iteration function, order 3, n-th root.

Summary

The Chebyshev-Halley family of iteration functions (IFs) to solve \(f(x) = 0 \) has been introduced by Werner [12]. It can also be found in [1] and [5], as reported in [11]. Each member of this family is obtained as an improvement of the Newton’s IF, depends on a real parameter \(\beta \), and can be written as

\[
G_\beta(x) = x - \frac{f(x)}{f'(x)} \left[\frac{1 - (\beta - 1/2)L_f(x)}{1 - \beta L_f(x)} \right]
\]

where \(L_f(x) = \frac{f(x)f''(x)}{[f'(x)]^2} \). These IFs are of order 3 when we look for an \(\alpha \in \mathbb{R} \) such that \(f(\alpha) = 0 \) and \(\alpha \) is a simple root of \(f(x) \).

In this paper we obtain this family of IFs from a linear combination of two Newton’s IFs. We will also see how to modify the parameter \(\beta \), and express it as a function of \(x \), to obtain an IF of order 4.

We also consider the best parameter \(\beta \) for the \(n \)-th root computation problem. For this problem the best parameter depends only on \(n \). In particular, when we compare the Halley (\(\beta = 1/2 \)) and Super-Halley (\(\beta = 1 \)) IFs, we show that Super-Halley IF is the best method to compute the \(n \)-th root for \(n = 2, 3, 4 \), Halley IF is the best method for \(n \geq 6 \), and they are equivalent for \(n = 5 \). Both are better than the Chebyshev (\(\beta = 0 \)) IF.

References