
ar
X

iv
:1

20
5.

20
50

v1
  [

m
at

h.
R

T
] 

 9
 M

ay
 2

01
2

ON MAXIMAL GREEN SEQUENCES

T. BRÜSTLE, G. DUPONT AND M. PÉROTIN

Abstract. Maximal green sequences are particular sequences of quiver mu-
tations which were introduced by Keller in the context of quantum dilogarithm
identities and independently by Cecotti-Córdova-Vafa in the context of super-
symmetric gauge theory. Our aim is to initiate a systematic study of these
sequences from a combinatorial point of view.

Interpreting maximal green sequences as paths in various natural posets
arising in representation theory, we prove the finiteness of the number of max-
imal green sequences for cluster finite quivers, affine quivers and acyclic quivers
with at most three vertices. We also give results concerning the possible num-
bers and lengths of these maximal green sequences.

Finally we describe an algorithm for computing maximal green sequences
for arbitrary valued quivers which we used to obtain numerous explicit exam-
ples that we present.
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Introduction

Maximal green sequences are maximal chains in a partially ordered set that
arises from a cluster exchange graph once an initial seed is fixed. The name "max-
imal green sequence" appears in [Kel11b] where these sequences are used to obtain
quantum dilogarithm identities. Moreover, the same sequences appear in theoreti-
cal physics where they yield the complete spectrum of a BPS particle, see [CCV11,
§4.2].

The partial order relation has been studied by Happel and Unger on a subgraph
of the cluster exchange graph [Ung96a, Ung96b, HU05], and recently a number of
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representation-theoretic interpretations of the poset structure of the whole cluster
exchange graph has been given [KQ12, KY12, IR12].

The theory of cluster algebras is related to various other fields, and thus the
cluster exchange graph can be interpreted in many ways. For instance one can view
it as a generalised associahedron, which is known to carry a poset structure (the
Tamari poset). While there are certainly a lot more interesting connections, we will
focus in this paper mainly on the combinatorial description of the poset structure
by quiver mutations as given in [Kel11b], and we intend to initiate a systematic
study of maximal green sequences applying representation-theoretic techniques.

The main questions addressed in this paper are: to find sufficient criteria for the
existence of maximal green sequences (true for acyclic quivers but not in general)
and to study the finiteness of the number of maximal green sequences and their
possible lengths.

Organisation of the article. In Section 1, we introduce the notion of maximal
green sequences in elementary terms and present some general results. When the
proofs do not require any further background we present them in this section. When
they do require some additional background, they are postponed to Section 7.

The short Section 2 makes the appearance of maximal green sequences explicit
in the context of theoretical physics.

In Section 3, we study maximal green sequences for quivers of finite cluster type.
As before, the proofs requiring additional background are postponed to Section 8.

Section 4 presents an analysis of the maximal green sequences for acyclic quivers
of infinite representation types; the corresponding proofs are found in Section 9.

The representation-theoretical background underlying the proofs and (part of)
the motivations of this article can be found in Section 5 where we recall the var-
ious connections between maximal green sequences and some classical posets in
representation theory.

In this spirit, we present in Section 6 additional results on the connections be-
tween maximal green sequences and the classical Happel-Unger’s poset of tilting
modules over an algebra, see [HU05].

Sections 7–9 contain the missing proofs.
Finally, Appendix A presents an algorithm that we used for computing numerous

explicit examples which can be found in Appendix B. This latter appendix also
contain results concerning maximal green sequences for valued quivers; except in
this very last part of the article, valued quivers were not considered since the
theoretical context for their study is still conjectural under several aspects.

1. Green sequences

Without further specification, quivers will always be finite connected oriented
graphs and cluster quivers will be quivers without loops nor oriented 2-cycles. A
quiver is called acyclic if it has no oriented cycles. Given a quiver Q, we denote by
Q0 its set of vertices and by Q1 its set of arrows.

1.1. Cluster algebras. Introduced in [FZ02], cluster algebras are commutative
rings equipped with a distinguished set of generators, the cluster variables, gathered
into possibly overlapping subsets of pairwise compatible variables, the clusters,
defined recursively with a combinatorial process, the mutation. The dynamics of
this mutation process are encoded in a combinatorial data, the exchange matrix.

An exchange matrix is a matrix B “ pbijq P Mn,n`mpZq for some m,n ě 0 such
that the principal part of B, that is, the square submatrix B0 “ pbijq1ďi,jďn P
MnpZq is skew-symmetrisable, that is, there exists a diagonal matrix D P MnpZq
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with positive diagonal entries such that DB0 is skew-symmetric. Abusing terminol-
ogy we say that B itself is skew-symmetrisable, or that it is skew-symmetric when
B0 is so.

Given a skew-symmetrisable exchange matrix B P Mn,n`mpZq, we denote by AB

the corresponding cluster algebra, see [FZ07] for details.

Definition 1.1 (Matrix mutation). Let B P Mn,n`mpZq be skew-symmetrisable.
Then for any 1 ď k ď n, the mutation of B in the direction k is the skew-
symmetrisable matrix µkpBq “ pb1

ijq P Mn,n`mpZq given by

b1
ij “

"
´bij if i “ k or j “ k,

bij ` rbiks`rbkjs` ´ rbiks´rbkjs´ otherwise,

where rxs` “ maxpx, 0q and rxs´ “ min px, 0q for any x P Z.

It is easy to see that µkpµkpBqq “ B for any 1 ď k ď n and that µkpBq is
skew-symmetric if and only if B is skew-symmetric. In this latter case, we say that
AB is simply-laced and it is usually more convenient to use the formalism of ice
quivers instead of exchange matrices.

1.2. Ice quivers and their mutations. An ice quiver is a pair pQ,F q where Q

is a cluster quiver and F Ă Q0 is a (possibly empty) subset of vertices called the
frozen vertices such that there are no arrows between them. For simplicity, we
always assume that Q0 “ t1, . . . , n ` mu and that F “ tn ` 1, . . . , n ` mu for some
integers m,n ě 0. If F is empty, we simply write Q for pQ,Hq.

We associate to pQ,F q its adjacency matrix BpQ,F q “ pbijq P Mn,n`mpZq such
that

bij “ | tiÝÑ j P Q1u | ´ | tjÝÑ i P Q1u |

for any 1 ď i ď n and any 1 ď j ď n ` m.
The map pQ,F q ÞÑ BpQ,F q induces a bijection from the set of ice quivers to the

set of skew-symmetric exchange matrices. Therefore, to any ice quiver pQ,F q we
can associate the cluster algebra ApQ,F q “ ABpQ,F q.

Definition 1.2 (Quiver mutation). Let pQ,F q be an ice quiver and k P Q0 be a
non-frozen vertex. The mutation of Q at k is defined as the ice quiver pµkpQq, F q
where µkpQq is obtained from Q by applying the following modifications:

(1) For any pair of arrows i
a

ÝÑ k
b

ÝÑ j in Q, add an arrow i
rabs

ÝÝÑ j in µkpQq;

(2) Any arrow i
a

ÝÑ k in Q is replaced by an arrow i
a˚

ÐÝÝ k in µkpQq;

(3) Any arrow k
b

ÝÑ j in Q is replaced by an arrow k
b˚

ÐÝ j in µkpQq;
(4) A maximal collection of 2-cycles is removed.

Then it is easy to see that for any non-frozen vertex k P Q0, the ice quiver
µkpQ,F q is the ice quiver corresponding to the skew-symmetric matrix µkpBpQ,F qq.

Example 1.3. Figure 1 shows an example of successive quiver mutations.

Two ice quivers are called mutation-equivalent if one can be obtained from the
other by applying a finite number of successive mutations at non-frozen vertices.
Since mutations are involutive, this defines an equivalence relation on the set of ice
quivers. The equivalence class of an ice quiver pQ,F q is called its mutation class
and is denoted by MutpQ,F q.

Two ice quivers pQ,F q and pQ1, F q sharing the same set of frozen vertices are
called isomorphic as ice quivers if there is an isomorphism of quivers φ : QÝÑQ1

fixing F . In this case, we write pQ,F q » pQ1, F q and we denote by rpQ,F qs the
isomorphism class of the ice quiver pQ,F q.
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Figure 1. An example of quiver mutations.

1.3. Green sequences. From now on, Q will always denote a cluster quiver and
we fix a copy Q1

0 “ ti1 | i P Q0u of the set Q0 of vertices in Q. We will identify Q0

with the set of integers t1, . . . , nu and Q1
0 with tn ` 1, . . . , 2nu in such a way that

for any 1 ď i ď n, we have i1 “ n ` i.

Definition 1.4 (Framed and coframed quivers). The framed quiver associated to

Q is the quiver pQ such that:

pQ0 “ Q0 \
 
i1 | i P Q0

(
,

pQ1 “ Q1 \
 
iÝÑ i1 | i P Q0

(
.

The coframed quiver associated to Q is the quiver qQ such that:

qQ0 “ Q0 \
 
i1 | i P Q0

(
,

qQ1 “ Q1 \
 
i1ÝÑ i | i P Q0

(
.

If Q is an arbitrary cluster quiver, both pQ and qQ are naturally ice quivers with

frozen vertices Q1
0. Therefore, by Mutp pQq we always mean the mutation class of

the ice quiver p pQ,Q1
0q.

Definition 1.5 (Green and red vertices). Let R P Mutp pQq. A non-frozen vertex
i P R0 is called green if

 
j1 P Q1

0 | D j1ÝÑ i P R1

(
“ H.

It is called red if  
j1 P Q1

0 | D iÝÑ j1 P R1

(
“ H.

If R is an ice quiver in Mutp pQq with adjacency matrix B “ pbijq P Mn,2npZq, the
submatrix cpRq “ pbi,n`jq1ďi,jďn is called the c-matrix of R. For any non-frozen
vertex i P Q0, its ith row cipRq is called the ith c-vector of R and it encodes the
number of arrows between i and the frozen vertices in R. For instance, we have

cp pQq “ In and cp qQq “ ´In. For more details on c-vectors, we refer the reader
to [FZ07] where they were introduced and to [NZ12, NC12, ST12, Nag11, Kel12]
where they were studied.

With this terminology, for a quiver R P Mutp pQq, a vertex i P Q0 is green if and
only if the ith c-vector cipRq has only non-negative entries and it is red if and only
if cipRq has only non-positive entries.
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Given a quiver R P Mutp pQq, we denote by gpRq the number of green vertices in
R. Note that this number only depends on rRs so that we set gprRsq “ gpRq.

Theorem 1.6. Let Q be a cluster quiver and R P Mutp pQq. Then any non-frozen
vertex in R0 is either green or red.

Proof. Let R P Mutp pQq. We need to prove that each row of the c-matrix of R

is non-zero and its entries are either all non-negative or all non-positive. This
result, known as the sign-coherence for c-vectors, was established in the case of
skew-symmetric exchange matrices in [DWZ10]. �

For skew-symmetrisable exchange matrices the sign-coherence for c-vectors is
still conjectural, and so is the non-simply-laced analogue of Theorem 1.6.

Example 1.7. In pQ, every non frozen vertex is green. In qQ, any non-frozen vertex
is red.

Definition 1.8 (Green sequences, [Kel11b]). A green sequence for Q is a sequence

i “ pi1, . . . , ilq Ă Q0 such that i1 is green in pQ and for any 2 ď k ď l, the vertex ik

is green in µik´1
˝ ¨ ¨ ¨ ˝ µi1p pQq. The integer l is called the length of the sequence i

and is denoted by ℓpiq.
A green sequence i “ pi1, . . . , ilq is called maximal if every non-frozen vertex in

µip pQq is red, where µip pQq “ µil ˝ ¨ ¨ ¨ ˝ µi1p pQq.
We denote by

greenpQq “ ti “ pi1, . . . , ilq Ă Q0 | i is a maximal green sequence for Qu

the set of all maximal green sequences for Q.

Example 1.9. Figure 2 shows that the sequence of mutations considered in Figure
1 is a maximal green sequence for the oriented triangle. Frozen vertices are coloured
in blue, green vertices in green and red vertices in red.
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Figure 2. An example of a maximal green sequence.

We refer the reader willing to compute more examples to Bernhard Keller’s java
applet [Kel] or to the Quiver Mutation Explorer [DP12].
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1.4. The oriented exchange graph. The following proposition will be proved in
Section 7.

Proposition 1.10. Let Q be a cluster quiver and let R P Mutp pQq.

(1) If all the non-frozen vertices in R0 are green, then R » pQ as ice quivers.

(2) If all the non-frozen vertices in R0 are red, then R » qQ as ice quivers.

Definition 1.11 (Oriented exchange graph). The oriented exchange graph of Q

is the oriented graph
ÝÝÑ
EGpQq whose vertices are the isomorphism classes rRs of ice

quivers R P Mutp pQq and where there is an arrow rRsÝÑ rR1s in
ÝÝÑ
EGpQq if and only

if there exists a green vertex k P R0 such that µkpRq » R1.

In [FZ03], Fomin and Zelevinsky introduced the (unoriented) exchange graph of
Q as the dual graph EGpQq of the cluster complex ∆pAQq of the cluster algebra
AQ associated with Q. Vertices in EGpQq are labelled by the clusters in AQ and
two clusters in EGpQq are joined by an edge if and only if they differ by a single

cluster variable. Then
ÝÝÑ
EGpQq is an orientation of EGpQq corresponding to the

choice of an initial seed in AQ with exchange matrix BpQq. The orientation is
defined as follows. Let x and x1 be two adjacent clusters in EGpQq corresponding

respectively to rRs and rR1s in
ÝÝÑ
EGpQq. Assume that x and x1 differ by a single

cluster variable xi, so that R1 » µipRq. Then the edge joining x and x1 in EGpQq
is oriented towards x1 if i is green in R and towards x otherwise.

As EGpQq is an n-regular graph, if rRs is a vertex in
ÝÝÑ
EGpQq, then there are

gprRsq arrows starting at rRs in
ÝÝÑ
EGpQq and n ´ gprRsq arrows ending at rRs in

ÝÝÑ
EGpQq (which, by Theorem 1.6, correspond to the red vertices in R).

Corollary 1.12. Let Q be a cluster quiver. Then:

(1)
ÝÝÑ
EGpQq has a unique source, which is r pQs.

(2)
ÝÝÑ
EGpQq has a sink if and only if r qQs is a vertex in

ÝÝÑ
EGpQq and in this case

r qQs is the unique sink.

Proof. r pQs belongs to
ÝÝÑ
EGpQq by construction and it is a source in

ÝÝÑ
EGpQq since

all the vertices in pQ are green. If rRs is another source, then all the vertices in R

are green and then it follows from Proposition 1.10 that R » pQ, proving the first
point. Now if rRs is a sink in

ÝÝÑ
EGpQq, then all its vertices are red and therefore, it

follows from Proposition 1.10 that R » qQ, proving the second point. Conversely, if

r qQs is in
ÝÝÑ
EGpQq, then it is a sink since all its non-frozen vertices are red. �

The following statement rephrases Corollary 1.12:

Proposition 1.13. Let Q be a cluster quiver. Then greenpQq ‰ H if and only if

there is a sink in
ÝÝÑ
EGpQq. In this case, there is a natural bijection between greenpQq

and the set of oriented paths in
ÝÝÑ
EGpQq from its unique source to its unique sink.

�

As it is explained in Section 5,
ÝÝÑ
EGpQq is isomorphic to the Hasse graph of various

partially ordered sets. In particular, it has the following essential property:

Proposition 1.14. Let Q be a cluster quiver. Then
ÝÝÑ
EGpQq has no oriented cycles.

�

1.5. Existence, finiteness and lengths. Let Q be a cluster quiver. We recall
that if i “ pi1, . . . , ilq is a green sequence for Q, then the integer l is called the
length of i and is denoted by ℓpiq. For any l ě 0, we set

greenlpQq “ ti P greenpQq | ℓpiq “ lu ,
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greenďlpQq “ ti P greenpQq | ℓpiq ď lu

and

ℓmin pQq “ min tl ě 0 | greenlpQq ‰ Hu P Zě0,

ℓmaxpQq “ max tl ě 0 | greenlpQq ‰ Hu P Zě0 \ t8u ,

with the conventions that ℓmin pQq “ ℓmaxpQq “ 0 if greenpQq is empty.
It is clear that if Q and Q1 are isomorphic quivers, then the isomorphism φ :

QÝÑQ1 induces an isomorphism
ÝÝÑ
EGpQqÝÑ

ÝÝÑ
EGpQ1q so that greenlpQq “ greenlpQ

1q
for any l ě 1. The following proposition shows a similar result for oppositions:

Proposition 1.15. Let Q be a cluster quiver. Then for any l ě 1, there exists a
natural bijection

greenlpQq Ø greenlpQ
op q.

Proof. Let i “ pi1, . . . , ilq be a maximal green sequence. Then there exists π P SQ0

such that µip pQq “ π ¨ qQ. Moreover, since π fixes the frozen vertices and since

the only arrows between frozen and non-frozen vertices in qQ are the i1ÝÑ i for
i P Q0, the permutation π is uniquely determined. Therefore we have µπ´1pi1q ˝

¨ ¨ ¨ ˝ µπ´1pilqp qQq “ pQ where π´1pilq is red in qQ and for any 2 ď k ď l, the vertex

π´1pikq is red in µπ´1pik´1q ˝ ¨ ¨ ¨ ˝ µπ´1pilqp qQq. Since the mutations commute with

taking opposite quivers, π´1pilq is green in p qQqop , the vertex π´1pikq is green in

µπ´1pik´1q ˝ ¨ ¨ ¨ ˝µπ´1pilqpp qQqop q for any 2 ď k ď l and µπ´1pilq ˝ ¨ ¨ ¨˝µπ´1pilqpp qQqop q

has only red vertices. Since p qQqop “ yQop , it follows that pπ´1pilq, . . . , π
´1pilqq is a

maximal green sequence for Qop . We therefore get a map greenlpQqÝÑ greenlpQ
op q

and applying the same argument to Qop , we get its inverse. Therefore, it is a
bijection. �

Lemma 1.16. Let Q be a cluster quiver and let R,R1 P Mutp pQq such that rRsÝÑ rR1s

in
ÝÝÑ
EGpQq. Then gprR1sq ě gprRsq ´ 1.

Proof. Without loss of generality, we can assume that R1 “ µkpRq for some green
vertex k in R. In order to prove the statement, it is enough to prove that any green
vertex in R which is different from k is also green in R1. We let B “ BpRq and
B1 “ BpR1q be the corresponding adjacency matrices. Let i be a green vertex in R

and let f be a frozen vertex in R. Since i is green in R, we have bif ě 0 and also,
since k is green in R, we have bkf ě 0. Therefore,

b1
if “ bif ` rbiks`rbkf s` ´ rbiks´rbkf s´

“ bif ` rbiks`rbkf s`

ě bif ě 0

so that i is green in R1. �

Remark 1.17. Note that under the hypothesis of Lemma 1.16, it may happen that
gprR1sq ą gprRsq ´ 1 since a red vertex in R can turn green in R1, see for instance
the penultimate mutation in Figure 2.

Corollary 1.18. Let Q be a cluster quiver. If greenpQq ‰ H, then ℓmin pQq ě |Q0|.

Proof. By definition, in a maximal green sequence i “ pi1, . . . , ilq, we have gpµip pQqq “

0 whereas gp pQq “ |Q0|. Therefore, it follows from Lemma 1.16 that l ě |Q0|. �

Example 1.19. (1) Let Q be the quiver 1ÝÑ 2ÝÑ 3. Then i “ p123q is a
maximal green sequence and therefore ℓmin pQq “ 3 “ |Q0|.
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(2) Let Q1 “ µ2pQq be the cyclic quiver with three vertices. Then it is easily
verified that ℓmin pQ1q “ 4 ą 3 so that Corollary 1.18 only provides a lower
bound for ℓmin .

Note also that these examples show that ℓmin is not invariant under mutations.
The same will appear to be true for ℓmax.

We recall that for a quiver Q, an admissible numbering of Q0 by sources (resp.
by sinks) is an n-tuple pi1, . . . , inq such that Q0 “ ti1, . . . , inu and where i1 is a
source (resp. a sink) in Q and such that for any 2 ď k ď n, the vertex ik is a source
(resp. a sink) in µik´1

˝ ¨ ¨ ¨ ˝ µi1pQq.

Lemma 1.20. Let Q be an acyclic quiver. Then any admissible numbering of
Q0 by sources is a maximal green sequence. In particular, greenpQq ‰ H and
ℓmin pQq “ |Q0|.

Proof. Since Q is acyclic, it is well-known that there is at least one admissible
numbering of Q0 by sources. Let i “ pi1, . . . , inq be such a numbering. Without
loss of generality, we assume that this admissible numbering is p1, . . . , nq. For any

1 ď k ď n, we let Bpkq be the adjacency matrix of Rpkq “ µk ˝ ¨ ¨ ¨ ˝ µ1p pQq and
Qpkq “ µk ˝ ¨ ¨ ¨ ˝µ1pQq. We prove by induction on k that the green vertices in Rpkq

are precisely tk ` 1, . . . , nu.
Let i ‰ k be non-frozen vertices and f be a frozen vertex. We have

b
pkq
i,f “ b

pk´1q
i,f ` rb

pk´1q
i,k s`rb

pk´1q
k,f s` ´ rb

pk´1q
i,k s´rb

pk´1q
k,f s´.

Since k is a source in Qpk´1q, it follows that b
pk´1q
i,k ď 0. Also, by induction hy-

pothesis k is green in Rpk´1q so that b
pk´1q
k,f ě 0. Therefore, b

pkq
i,f “ b

pk´1q
i,f so that a

non-frozen vertex i ‰ k is green (or red, respectively) in Rpkq if and only if it is green

(or red, respectively) in Rpk´1q. Moreover, b
pkq
k,k`n “ ´b

pk´1q
k,k`n “ ´bk,k`n “ ´1 so

that k is red in Rpkq whereas it was green in Rpk´1q. Thus, the green vertices in Rpkq

are exactly tk ` 1, . . . , nu. In particular, p1, . . . , nq is a maximal green sequence for
Q. �

In general, it is not true that greenpQq ‰ H for an arbitrary quiver Q. For
instance, we have the following proposition, which will be proved in Section 7:

Proposition 1.21. The quiver

2

��❁
❁❁

❁

��❁
❁❁
❁

Q : 1

<<②②②②
<<②②②②

3oo oo

has no maximal green sequences.

More generally, a representation-theoretic criterion for the non-existence of max-
imal green sequences is given in Proposition 7.1. This in particular enables us to
show that the McKay quiver

0

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

��✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬

��✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬

Q : 1

��✵
✵✵
✵✵
✵✵

//// 4

``❆❆❆❆❆❆❆❆❆

yysss
ss
sss

ss
sss

yysss
ss
sss

ss
sss

2 //

KK✗✗✗✗✗✗✗✗✗✗✗✗✗✗

KK✗✗✗✗✗✗✗✗✗✗✗✗✗✗
3

GG✍✍✍✍✍✍✍

ee❑❑❑❑❑❑❑❑❑❑❑❑❑

ee❑❑❑❑❑❑❑❑❑❑❑❑❑

considered in [TV10] has no maximal green sequences neither, see Example 7.2.
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The quiver in Proposition 1.21 is the quiver associated with any triangulation of
the once-punctured torus, see [FST08]. We will see in Section B.8 another example
of a surface without boundary, namely the sphere with four punctures, for which
there exist maximal green sequences.

1.6. A conjecture on lengths. Given a cluster quiver Q, the empirical maximal
length is

ℓ0maxpQq “ max tl ě 1 | greenkpQq ‰ H for any k s.t. ℓmin pQq ď k ď lu

and we let

green0pQq “ greenďℓ0
max

pQqpQq,

with the convention that ℓ0maxpQq “ 0 if greenpQq “ H.
We always have ℓ0maxpQq ď ℓmaxpQq and green0pQq Ă greenpQq but based on the

various examples we computed, we conjecture the following.

Conjecture 1.22. Let Q be a cluster quiver. Then ℓmaxpQq “ ℓ0maxpQq and
greenpQq “ green0pQq.

In other words, the set

tl P Zě0 | greenlpQq ‰ Hu

is an interval in Z.

The motivation for introducing the empirical maximal length is that it is easy
to determine in practice: let l be the smallest integer such that greenlpQq ‰ H
and greenl`1pQq “ H, then l “ ℓ0maxpQq. Therefore, if Conjecture 1.22 holds, it
is enough to find such an l to determine greenpQq. This is the strategy we use in
Appendix B.

Note that Conjecture 1.22 does not hold true in the non-simply-laced case, as it
appears for instance in Appendices B.1 or B.3.

2. Maximal green sequences and BPS quivers

As we already mentioned, maximal green sequences appear independently in
theoretical physics, implicitly in [GMN09] or more explicitly in [ACC`11, CCV11].
In order to make the connection clear, we present in this short section a precise
dictionary between the formal definition we gave in the previous section, and the
definition given in [CCV11, §4.2].

We fix a cluster quiver Q. Vertices in Q are called nodes in [CCV11].
For simplicity, we identify the set Q0 of vertices with t1, . . . , nu. We let tγiu1ďiďn

denote the canonical basis of Z
n. In the terminology of [CCV11], for any R P

Mutp pQq and for any 1 ď i ď n, the ith c-vector cipRq P Z
n is called the charge at

node i. Therefore, the charges in pQ are γ1, . . . , γn.

For any quiver R P Mutp pQq and for any 1 ď k ď n, the charge at node k in R

is ckpRq “
řn

i“1 ck;ipRqγi where ck;ipRq P Z for any i. It follows from the sign-
coherence for c-vectors (see Theorem 1.6) that either ck;ipRq ď 0 for every i, in
which case k is green in R, or ck;ipRq ě 0 for every i, in which case k is red in
R. Moreover, if k is green in R, then the c-vectors of µkpRq are precisely given in
terms of those of R by the rule for charges given in [CCV11, (4.4)].

Now, the sequences of mutations considered in [CCV11] for capturing complete
spectra of BPS particles are those for which:

(G1) the initial quiver appears with node charges γi;
(G2) the final quiver appears with node charges ´γi;
(G3) At each step we may mutate on any node whose charge can be expressed

as γ “
ř

i ciγi where ci ě 0 for any 1 ď i ď n.
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Therefore, with our terminology, (G1) implies that the initial quiver R has only

green vertices, so that rRs “ r pQs according to Proposition 1.10, (G2) implies that

the final quiver R1 has only red vertices so that rRs “ r qQs according to Proposition

1.10. Finally, (G3) says that at each step in the mutation sequence pQ » R
µi1ÝÝÑ

Rp1q
µilÝÝÑ ¨ ¨ ¨

µi1ÝÝÑ Rplq » qQ, we mutated at a green vertex. Therefore, the sequences
considered in [CCV11] are precisely the maximal green sequences of Q.

3. The finite cluster type

It was proved in [FZ03] that a cluster algebra AQ associated with a cluster quiver
Q has finitely many cluster variables if and only if Q is mutation-equivalent to a
Dynkin quiver

ÝÑ
∆. In this case, Q is called of finite cluster type and it is known

that the number of cluster variables in AQ equals the number of almost positive

roots of the Dynkin quiver
ÝÑ
∆, where the set Φě´1p

ÝÑ
∆q of almost positive roots of

ÝÑ
∆ is the disjoint union of the set Φ`p

ÝÑ
∆q of positive roots with the set of negative

simple roots.

Theorem 3.1. Let Q be a quiver of finite cluster type. Then

|Q0| ď |greenpQq| ă 8.

Proof. Since Q is of finite cluster type, the exchange graph EGpQq is finite. More-

over, we know from Proposition 1.14 that
ÝÝÑ
EGpQq is acyclic. Hence, it contains

only finitely many oriented paths and thus it follows from Proposition 1.13 that
greenpQq is finite.

Now since
ÝÝÑ
EGpQq is a finite acyclic oriented graph, it necessarily has at least

one sink and one source and by Corollary 1.12, it has a unique sink, corresponding

to r pQs, and a unique source, corresponding to r qQs. The underlying graph of
ÝÝÑ
EGpQq

is |Q0|-regular so that there are exactly |Q0| distinct arrows starting at r pQs. Since
ÝÝÑ
EGpQq is finite, each of these arrows gives rise to at least one oriented path from
the unique sink to the unique source and therefore we obtain at least |Q0| distinct

oriented paths from the unique source to the unique sink in
ÝÝÑ
EGpQq, that is, |Q0| ď

|greenpQq|. �

Remark 3.2. (1) If Q is a cluster quiver such that |Q0| “ 1, then clearly
|greenpQq| “ 1.

(2) If Q is a (connected) cluster quiver such that |Q0| “ 2, then it is shown in
Lemma 4.1 that greenpQq has two elements of respective lengths 2 and 3 in
the finite cluster type and a unique element, necessarily of length two, in
the other cases.

(3) If Q is a cluster quiver of finite cluster type such that |Q0| ą 2, then it will
appear in the examples that |greenpQq| ą |Q0| in general and, as it is seen
for instance in the Appendix B.2 for linearly oriented quivers Qn of type
An, the cardinality |greenpQnq| grows exponentially as a function of n.

Remark 3.3. If Q is of finite cluster type, then a rough analysis provides an upper
bound for ℓmaxpQq. Namely, if we set

χpQq “
ˇ̌
ˇ
!

rRs | R P Mutp pQq
)ˇ̌
ˇ ,

then we have
ℓmaxpQq ď |Q0| ¨ p|Q0| ´ 1q

χpQq´2
.

Indeed, an oriented path on
ÝÝÑ
EGpQq starts at r pQs where we have |Q0| choices of

directions and then, it passes at most once through any vertex in
ÝÝÑ
EGpQq distinct

from r pQs and r qQs. There are χpQq ´ 2 such vertices and at each such vertex rRs,
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there are at most |Q0|´1 possible directions (since in order to leave rRs, we cannot
use backwards the arrow we just used in order to arrive at rRs).

In general, these upper and lower bounds are not optimal but in the acyclic
case, we can sharpen the result with the following theorem whose proof is given in
Section 8:

Theorem 3.4. Let Q be a Dynkin quiver. Then:

(1) ℓmin pQq “ |Q0|,
(2) ℓmaxpQq “ |Φ`pQq|,

where Φ`pQq is the set of positive roots of Q.

Example 3.5. We show below the oriented exchange graphs for the quivers in
the mutation class of type A3 (up to isomorphisms and opposition). The labels on
the faces correspond to denominators of the cluster variables in the corresponding
clusters expressed in the seed with exchange matrix BpQq. The unique source is
circled in green and the unique sink is circled in red.

´α2

α1

´α3

α3

´α1

α2 ` α3

α1 ` α2 ` α3

α2

α1 ` α2

Figure 3. The oriented exchange graph of 1ÝÑ 2ÝÑ 3.

α1

´α2

α1 ` α3

α1 ` α2

´α3

α2

α2 ` α3

´α1

α3

Figure 4. The oriented exchange graph of the cyclic quiver with 3 vertices.
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´α2

´α1

´α3

α3

α1

ř
i αi

α2 ` α3

α1 ` α2

α2

Figure 5. The oriented exchange graph of 1ÐÝ 2ÝÑ 3.

We refer to Appendices B.2 and B.3 for additional examples.

4. The infinite cluster type

If Q is not of finite cluster type, then
ÝÝÑ
EGpQq is an infinite oriented graph and

it is not known whether greenpQq is a finite set or not. Moreover, we have already
seen in Proposition 1.21 that greenpQq can be empty in the general case. When Q

is acyclic, we know from Corollary 1.18 that greenpQq is non-empty so that we will
now focus on this case.

It is proved in [FZ03] that an acyclic quiver is of finite cluster type if and only
if it is an orientation of a Dynkin diagram or, in representation-theoretic terms, if
it is of finite representation type. Representation-infinite quivers are partitioned
into two sets: affine quivers, which are acyclic orientations of extended Dynkin

diagrams of types rA, rD or rE, and wild quivers, which are the acyclic quivers which
are neither Dynkin nor affine.

The following lemma will be proved in Section 9.

Lemma 4.1. Let Q be a (connected) cluster quiver with two vertices. Then:

(1) either Q is of type A2 and greenpQq “ 2, ℓmin pQq “ 2 and ℓmaxpQq “ 3,
(2) or Q is representation-infinite and greenpQq “ 1 and ℓmin pQq “ ℓmaxpQq “

2.

4.1. The affine case. In the affine case, our main theorem is:

Theorem 4.2. Let Q be an affine quiver. Then greenpQq is finite and non-empty.

Example 4.3. Consider the quiver

2

��❀
❀❀
❀

Q : 1

AA✄✄✄✄
// 3

of affine type rA2,1. Then locally around r pQs, the oriented exchange graph
ÝÝÑ
EGpQq

can be depicted as follows where the unique source is circled in green and the unique
sink is circled in red. Here the faces are labelled by the denominator vectors of the
cluster variables in the corresponding clusters, when expressed in the initial seed

corresponding to r pQs.
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α1 ` α3

α2

α3 ´α2 α1 2α1 ` α2 ` α3

´α1 ´α3 α1 ` α2 2α1 ` 2α2 ` α3

We see that, in this case, there are exactly five maximal green sequences.
Now, if we consider its mutation Q1 “ µ2pQq given by

2

��✄✄
✄✄

Q1 : 1 //// 3,

^^❂❂❂❂

then locally around rxQ1s, the oriented exchange graph
ÝÝÑ
EGpQ1q looks as follows.

´α2

α1 ` α2 ` α3

´α1 ´α3 α1 2α1 ` α3

α2 ` α3 α2 α1 ` α2 2α1 ` α2 ` α3

Note that in this case, there are also five maximal green sequences.

For additional examples, we refer the reader to Appendix B.5.

4.2. Wild quivers with three vertices. For the wild case, the situation appears
to be more complicated. It is in fact known that for any (connected) wild quiver Q
with at least three vertices, there exist regular tilting kQ-modules [Rin88]. There-
fore, the proof of Theorem 4.2 cannot be reproduced for wild quivers. However,
we will prove in Proposition 9.3 that for quivers with three vertices, regular tilting
kQ-modules do not appear along maximal green sequences so that we are still able
to deduce the finiteness of greenpQq in this case.

Theorem 4.4. Let Q be an acyclic quiver with three vertices. Then greenpQq is
finite and non-empty.

The proof is given in Section 9.
If Q is a wild quiver with at least four vertices, we do not know whether greenpQq

is finite or not. In this case, we can only provide a few examples which yield some
evidence for the finiteness of this number.

If Conjecture 1.22 holds, in order to prove that greenpQq is a finite set for a
given quiver Q, it would be enough to find the smallest l ě 1 such that greenlpQq ‰
H and such that greenl`1pQq “ H; in this case greenpQq “ greenďlpQq. We
now provide examples of wild quivers for which we found such integers. These
were computed with the computer program Quiver Mutation Explorer [DP12]
whose algorithm will be outlined in Appendix A.
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Example 4.5. Consider the quiver

Q : 1 // 2 // 3 // // 4.

Then
l |greenlpQq|

4 1

5 7

6 6

7 7

8 0

Therefore, ℓmin pQq “ 4, ℓ0maxpQq “ 7 and |green0pQq| “ 21.

Example 4.6. Consider the quiver

Q : 1 //// 2 // 3 // // 4.

Then
l |greenlpQq|

4 1

5 4

6 0

Therefore, ℓmin pQq “ 4, ℓ0maxpQq “ 5 and |green0pQq| “ 5.

5. Silting, tilting, cluster-tilting and t-structures

As it was already mentioned, given a cluster quiver Q, the oriented exchange
graph

ÝÝÑ
EGpQq we are studying in this article is an orientation of the cluster ex-

change graph EGpQq of the cluster algebra AQ, which is the dual graph of the
cluster complex ∆pAQq introduced in [FZ03]. The same exchange graph also arises
naturally in representation theory. This was first observed in [BMR`06, CCS06]
where it was proved that if Q is an acyclic quiver, then the clusters in AQ cor-
respond bijectively to the cluster-tilting objects in the so-called cluster category
CQ of Q in such a way that cluster mutations correspond to mutations of cluster-
tilting objects in CQ. This generalises to arbitrary skew-symmetric cluster algebras
by considering the cluster-tilting theory of certain generalised cluster categories,
see [Ami09, Pla11a]. The aim of this section is to recall how EGpQq and

ÝÝÑ
EGpQq

arise in the context of additive categorifications and related topics in representation
theory.

In the particular case where Q is acyclic, identifying modkQ with a subcategory
of the cluster category CQ, the tilting kQ-modules become cluster-tilting objects in
CQ and therefore, the cluster complex ∆pAQq contains a certain subcomplex whose
maximal simplices correspond to the tilting kQ-modules. Already in 1987 Ringel
observed that the set TA of tilting modules over a finite dimensional algebra A

carries the structure of a simplicial complex. The study of this complex and of a
poset structure on TA was initiated in [RS91] and further carried out by Happel
and Unger [Ung96a, Ung96b, HU05]. We refer to the contributions of Ringel and
of Unger in the Handbook of tilting theory for further details [Rin07, Ung07].

In the first part of this section we recall the related notions for tilting modules,
and describe then some generalisation to the setup of derived categories. We finally
explain the link to cluster categories.

Throughout, we fix an algebraically closed field k and all the algebras we consider
are k-algebras. If there is no risk of confusion, for a finite-dimensional algebra A,
we denote by D “ DbpmodAq its bounded derived category with shift functor r1s.
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5.1. Tilting modules and their mutations. Let A be a basic connected finite-
dimensional k-algebra with n non-isomorphic simple modules.

Definition 5.1 (Tilting modules). A finitely generated A-module T is called tilting
if

(1) pdimT ď 1,

(2) ExtiApT, T q “ 0 for all i ą 0,
(3) A admits a coresolution in modA by A-modules in addT .

A poset structure on the set TA of isomorphism classes of basic tilting modules
is defined in [RS91] by setting

T ď T 1 ô TK Ď T 1K

where
TK “ tX P modA | ExtipT,Xq “ 0 for all i ą 0u.

We denote by
ÝÑ
KmodA the Hasse graph of this poset of tilting A-modules. It is shown

in [HU05] that the unoriented graph underlying this Hasse graph is the dual graph

of the complex of tilting A-modules: there is an arrow T Ñ T 1 in
ÝÑ
KmodA precisely

when T “
À

j Tj and T 1 “ µ`
k pT q “ pT {Tkq ‘T 1

k where T 1
k is the forward mutation

of T at some i defined as the cokernel of a minimal left add pT {Tkq-approximation
Tk Ñ M (we usually slightly abuse notations and write T {Tk for

À
j‰k Tj).

The poset TA has A as unique maximal element, and in case the algebra A is
Gorenstein, it has DA as unique minimal element.

5.2. Silting objects and their mutations. The Hasse graph of the poset of
tilting A-modules is not n-regular since not all tilting modules admit mutations.
There is a number of ways to fix this problem: Iyama and Reiten propose to
study support τ-tilting modules (since every sincere almost tilting module has a
completion) [IR12], and there are various ways to extend the notion of tilting module
to a larger class of objects where mutations are always possible. We refer to [KY12]
for a more complete picture on those various concepts, and we just recall the concept
of silting objects here:

Let D denote the bounded derived category of modA with shift functor r1s.

Definition 5.2 (Silting objects, [KV88]). An object T in D is called silting if:

(1) HomDpT, T risq “ 0 for any i ą 0,
(2) thick pT q “ D

where thick pT q denotes the thick subcategory generated by T in D.

It is shown in [AI10] that the set TD of isomorphism classes of basic silting objects
is turned into a poset by setting

T ď T 1 ô TK Ď T 1K,

where as for modules

TK “ tX P D | HomDpT,Xrisq “ 0 for all i ą 0u.

Aihara and Iyama also show in [AI10] that the unoriented graph underlying the

Hasse graph
ÝÑ
KD of TD is the dual graph of the complex of silting objects in D: there

is an arrow T Ñ T 1 in
ÝÑ
KD precisely when T “

À
j Tj and T 1 “ µ`

k pT q “ pT {Tkq‘T 1
k

where T 1
k is the forward mutation of T at some k defined as

T 1
k “ Cone pTk Ñ

à
j‰k

Irr pTk, Tjq˚ b Tjq.

A tilting object in D is a silting object T such that HomDpT, T risq “ 0 for any
i ‰ 0. In particular, any tilting A-module T viewed as a stalk complex in D is
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a tilting object in D, and therefore a silting object in D. It follows immediately
from the definition that if T and T 1 are tilting A-modules such that T 1 “ µ`

k pT q as

A-modules, then T 1 “ µ`
k pT q as silting objects in D.

5.3. t-structures and their mutations. Let T be a silting object in D and con-
sider the full subcategories in D:

D
ď0
T “ tN P D | HomDpT,N risq “ 0 for all i ą 0u

D
ě0
T “ tN P D | HomDpT,N risq “ 0 for all i ă 0u .

Then pDď0
T ,Dě0

T q is a bounded t-structure on D with length heart HT , see for
instance [KY12]. The simple forward mutation (also called forward tilt) of a heart of
a bounded t-structure in D defined in [HRS96] corresponds to the forward mutation
of the respective silting object in D, see [AI10, KY12].

HTD
ď0
T D

ě0
T

T T r1s

Figure 6. The bounded t-structure on D associated with a silting object.

Also from these papers, we summarise the situation as follows: isomorphism
classes of basic silting objects in D correspond bijectively to bounded t-structures
with length heart in D. The t-structures are ordered by inclusion of their left aisles,
and the forward mutation describes the arrows in the Hasse graph of these posets,
see Figure 7.

Since there is always an infinite number of silting objects in the derived cate-
gory, we restrict our study to an interval with maximal element A and minimal
element Ar1s, thus slightly larger than the poset of tilting A-modules. We denote

by
ÝÝÑ
EGDpA,Ar1sq the Hasse graph of the interval formed by the silting objects

which are between A and Ar1s for this partial order. This interval, which was al-
ready considered in [KQ12] appears to be relevant for the purpose of maximal green
sequences, dilogarithm identities or for BPS quivers theory [Kel11b, CCV11, BD12].

5.4. Cluster-tilting objects and their mutations.

Definition 5.3 (Cluster-tilting objects). A cluster-tilting object T in a triangulated
category C is an object T such that for any X in C, we have

Ext1CpT,Xq “ 0 ô X P addT.

Cluster-tilting objects were first considered in [BMR`06] where it was proved
that the combinatorics of cluster-tilting objects in cluster categories were governed
by mutations in (simply-laced) acyclic cluster algebras.

Given an acyclic quiver Q, its path algebra kQ is a finite-dimensional hereditary
algebra. We denote by Γ the Ginzburg dg-algebra associated with the quiver with
potential pQ, 0q. It is a 3-Calabi-Yau dg-algebra concentrated in negative degrees,
see [Kel11a]. We denote by DΓ the derived category of dg-Γ-modules, by per Γ

its perfect subcategory and by DfdΓ the full subcategory of DΓ formed by those
dg-modules with finite-dimensional total homology. The cluster category of Q is
defined in [Ami09] as the triangulated quotient CQ “ per Γ{DfdΓ. It is a Hom-finite
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HTD
ď0
T D

ě0
T

T T r1s

µ`

Hµ`TD
ď0
µ`T

D
ě0
µ`T

µ`T µ`T r1s

Figure 7. Forward mutation of a silting object in D and the in-
clusion of the corresponding left aisles.

triangulated 2-CY category which is naturally triangle-equivalent to the cluster
category defined as an orbit category in [BMR`06].

Then
ÝÝÑ
EGpQq “

ÝÝÑ
EGDkQpkQ,kQr1sq is an orientation of the graph of mutations

of the cluster-tilting objects in CQ and the unique source corresponds to the image
of Γ under the canonical morphism per ΓÝÑCQ, see [KN10] and also [KQ12, KY12,
Qiu12].

For a general cluster quiver Q and a non-degenerate potential W on Q, it is still
possible to form the triangulated quotient CQ,W “ per ΓQ,W {DfdΓQ,W where ΓQ,W

is the Ginzburg dg-algebra associated with the quiver with potential pQ,W q. Then
ÝÝÑ
EGpQq is an orientation of the connected component of the graph of mutations
of cluster-tilting objects in CQ,W which contains the image of ΓQ,W under the
canonical morphism per ΓQ,W ÝÑ CQ,W .

If Σ denotes the suspension functor in DfdΓQ,W , a maximal green sequence for Q
corresponds in this context to a sequence of forward mutations from the canonical
heart H of DfdΓQ,W to its shift ΣH, see [Kel11b].

5.5. Patterns. Let Q be a cluster quiver with n vertices and let Tn denote the n-
regular tree so that the edges adjacent to any vertex in Tn are labelled by t1, . . . , nu.
Let t0 be a vertex in that graph. To any vertex t in Tn we can associate an ice quiver

Qptq such that Qpt0q “ pQ and such that t and t1 are joined by an edge labelled by
k in Tn if and only if Qpt1q “ µkpQptqq. This endows Tn with a structure of an

oriented graph
ÝÑ
T n by orienting the edge t

k
t1 towards t1 if and only if k is

green in Qptq.
Let W be a non-degenerate potential on Q and Γ be the corresponding Ginzburg

dg-algebra. The category DfdΓ (with suspension functor Σ) is endowed with a
natural t-structure with length heart H. As explained in [Kel12], we can associate
to any vertex t in Tn a heart Hptq in DfdΓ such that Hpt0q “ H and such that there

is an arrow t
k // t1 in

ÝÑ
T n if and only if Hpt1q is obtained from Hptq by a forward
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mutation at the simple Skptq in Hptq, see also [KQ12, KY12]. This is called the
pattern of hearts in DfdΓ. Then a maximal green sequence pi1, . . . , inq corresponds

to a path t0
i1 // t1

i2 // ¨ ¨ ¨
in // tn in

ÝÑ
T n such that Hptnq » ΣHptq and

Hptkq fi ΣHptq for any k ă n.
If Q is acyclic, H “ kQ and D “ DbpmodHq has shift functor r1s, we can also

associate to any vertex t in Tn a silting object T ptq in D such that T pt0q “ kQ and

such that there is an arrow t
k // t1 in

ÝÑ
T n if and only if T pt1q is obtained from

T ptq by a forward mutation at T
ptq
k . This is called the silting pattern on D. Then

it follows from [KQ12] that a maximal green sequence pi1, . . . , inq corresponds to

a path t0
i1 // t1

i2 // ¨ ¨ ¨
in // tn in

ÝÑ
T n such that T ptnq » Hr1s and T ptkq fi

Hr1s for any k ă n.

6. More on Happel-Unger’s poset

We assume in this section that Q is a cluster quiver which admits a non-
degenerate potential W which is Jacobi-finite, that is, the Jacobian algebra A “
J pQ,W q is finite-dimensional. These conditions are clearly satisfied when Q is
acyclic (with zero potential so that J pQ, 0q “ kQ) or when pQ,W q is given by an
unpunctured surface, see [ABCP10, Lab09].

The Jacobian algebra A is Gorenstein [KR07], thus we know from Section 5 that

the oriented exchange graph
ÝÑ
KmodA of tilting modules has A as unique maximal

element and DA as unique minimal element. We note that
ÝÑ
KmodA is in general not

connected, even in cases where the exchange graph of silting objects is connected:
Happel and Unger have shown that for an affine acyclic quiver Q, the graph

ÝÑ
KmodA

is connected precisely when Q is not of type rA1,s with s ě 1, or rA2,2 with alternating
orientation [HU05].

Theorem 6.1. Let Q be an acyclic quiver and H “ kQ. Then
ÝÑ
KmodH is a full

convex oriented subgraph of
ÝÝÑ
EGpQq.

Proof. Let T and T 1 be two tilting H-modules and consider a path

TÝÑT p1qÝÑ ¨ ¨ ¨ ÝÑT plqÝÑT 1

in
ÝÝÑ
EGpQq. Then we have the following chain of inclusions of the left aisles of the

corresponding t-structures in D “ DpmodHq:

D
ď0
T Ă D

ď0

T p1q Ă ¨ ¨ ¨ Ă D
ď0

T plq Ă D
ď0
T 1 .

If there is some 1 ď k ď l such that T pkq is not a tilting H-module, then it is a
silting object in

ÝÝÑ
EGDpH,Hr1sq and therefore, it has a summand of the form Pir1s.

Thus we have Pir1s P D
ď0

T pkq and we get Pir1s P D
ď0
T 1 which implies

0 “ HomDpPir1s, T 1r1sq “ HomDpPi, T
1q “ HomHpPi, T

1q

so that T 1 is not sincere, which is a contradiction since every tilting H-module is
sincere. Therefore, for any 1 ď k ď l, the silting object T pkq is a tilting H-module.
And as it was already mentioned, the forward mutation of a tilting module T in
modH coincides with the forward mutation of T viewed as a silting object in D.
Therefore,

ÝÑ
KmodH is a full convex oriented subgraph of

ÝÝÑ
EGpQq. �

Example 6.2. Figures 8 and 9 show how the Happel-Unger’s poset embeds in the
oriented exchange graph of type A2. In both cases, the unique source is circled in
green and the unique sink is circled in red.



ON MAXIMAL GREEN SEQUENCES 19

P1 ‘ P2

P1r1s ‘ P2

P1r1s ‘ P2r1s

P2r1s ‘ I2

P1 ‘ I2

Figure 8. The oriented exchange graph of 1ÝÑ 2.

P1 ‘ P2

P1 ‘ I2

Figure 9. Happel-Unger’s poset, sitting in the oriented exchange
graph of 1ÝÑ 2.

Example 6.3. Figures 10, 11, 12, 13 14 and 15 show how the Happel-Unger’s
posets embed in the oriented exchange graphs of type A3. In any case, the sources
are circled in green and the sinks are circled in red.

´α2

α1

´α3

α3

´α1

α2 ` α3

α1 ` α2 ` α3

α2

α1 ` α2

Figure 10. The oriented exchange graph of the quiver
1ÝÑ 2ÝÑ 3, labelled with denominator vectors.
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´α2

α1

´α3

α3

´α1

α2 ` α3

α1 ` α2 ` α3

α2

α1 ` α2

Figure 11. Happel-Unger’s poset for the quiver 1ÝÑ 2ÝÑ 3, sit-
ting in the poset of maximal green sequences.

´α2

´α1

´α3

α3

α1

ř
i αi

α2 ` α3

α1 ` α2

α2

Figure 12. The oriented exchange graph of 1ÐÝ 2ÝÑ 3, labelled
with denominator vectors.

´α2

´α1

´α3

α3

α1

ř
i αi

α2 ` α3

α1 ` α2

α2

Figure 13. Happel-Unger’s poset, sitting in the oriented exchange
graph of 1ÐÝ 2ÝÑ 3.
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α1

´α2

α1 ` α3

α1 ` α2

´α3

α2

α2 ` α3

´α1

α3

Figure 14. The oriented exchange graph of the cyclic quiver with
3 vertices, labelled with denominator vectors.

α1

´α2

α1 ` α3

α1 ` α2

´α3

α2

α2 ` α3

´α1

α3

Figure 15. Happel-Unger’s poset for the non-hereditary cluster-
tilted algebra of type A3, sitting in the corresponding oriented
exchange graph.

Remark 6.4. Example 6.3 shows a phenomenon which was already observed in
[HU05], namely that the Happel-Unger’s poset is not stable under derived equiva-
lences. It also shows that the oriented exchange graph is not stable under derived
equivalences neither. Indeed, in the linear case (Figure 11) there are 9 maximal
green sequences whereas there are 10 in the alternating case (Figure 12).

Lemma 6.5. Let Q be an acyclic quiver and H “ kQ. Let pi1, . . . , inq be an
admissible numbering of Q0 by sinks. Assume that there is a path from H to DH

in
ÝÑ
KmodH and let pv1, . . . , vlq be the corresponding green sequence for Q. Then

pv1, . . . , vl, i1, . . . , inq P greenl`npQq.

Proof. Since DH is a tilting H-module, it is in particular a tilting object in DpmodHq
and therefore a silting object in D “ DbpmodHq. Let pi1, . . . , inq be an admissible
numbering of Q0 by sinks. The endomorphism algebra of DH has Gabriel quiver
Qop and pi1, . . . , inq is an admissible sequence of sources for Qop . Therefore, con-
sidering successive APR-tilts at sources (see [APR79]), we obtain a sequence of
tilting objects in D:

DH
µi1ÝÝÑ T p1q µi2ÝÝÑ ¨ ¨ ¨

µin´1

ÝÝÝÝÑ T pn´1q µinÝÝÑ Hr1s
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where

T pkq “

˜
à
jăk

Iij

¸
‘

˜
à
lďk

τ´1Iij

¸
“

˜
à
jăk

Iil

¸
‘

˜
à
lěk

Pil r1s

¸

for any 1 ď k ď n. In particular, we have proper inclusions of left aisles

D
ď0
DH Ă D

ď0

T p1q Ă D
ď0

T p2q Ă ¨ ¨ ¨ Ă D
ď0

T pn´1q Ă D
ď0
Hr1s

so that we obtain a path of length n from DH to Hr1s in EGpQq. By Theorem 6.1,

a path of length l from H to DH in
ÝÑ
KmodH gives rise to a path of length l from

H to DH in
ÝÝÑ
EGpQq, composing this path with the above path from DH to Hr1s

gives a path from H to Hr1s of length n ` l in
ÝÝÑ
EGpQq, and therefore an element

in greenl`npQq. Figure 16 illustrates the proof.

µ`
pv1,...,vlq

H DH Hr1s

modHr´1s modH modHr1s

Figure 16. Extending a path from H to DH to a maximal green sequence.

�

The statement of Lemma 6.5 fails if Q is not acyclic: from Figure 15 in Example
6.3, we see that in case Q is the 3-cycle with non-degenerate potential that 3-cycle,
the Jacobian algebra A is self-injective and so the poset

ÝÑ
KmodA consists only of one

point. The minimal length of a maximal green sequence is 4, thus the statement of
lemma 6.5 does not hold.

Remark 6.6. Lemma 6.5 provides a criterion for the non-existence of paths from
H to DH in

ÝÑ
KmodH . For instance, consider the quivers

Q1 : 1 // 2 // 3 //// 4 and Q2 : 1 // // 2 // 3 //// 4.

Since kQ1 and kQ2 are wild hereditary algebras, they have no projective-injective
modules. Therefore, for any i “ 1, 2, a path from kQi to DkQi in

ÝÑ
KmodkQi

must have a length at least 4. However, as we saw in Examples 4.5 and 4.6, we
have ℓ0maxpQ1q “ 7 and ℓ0maxpQ2q “ 5. Therefore, if Conjecture 1.22 holds, then
greenlpQ1q and greenlpQ2q would be empty for l ě 8 and there would be no paths

from kQi to DkQi in
ÝÑ
KmodkQi

.

7. Proofs of Section 1

7.1. Proof of Proposition 1.10.

Proof. Let W be a generic potential on Q and let Γ be the Ginzburg dg-algebra
associated to the quiver with potential pQ,W q. The category DfdΓ is endowed with
a natural t-structure and we denote by H the corresponding heart with simples
Si, i P Q0. Let T|Q0| denote the |Q0|-regular tree and consider the pattern of tilts
t ÞÑ Hptq with HpT0q “ H, see Section 5.5 or [Kel12, §7.7].
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Since R P Mutp pQq, there is some vertex t in T|Q0| such that R “ Qptq and since
all the non-frozen vertices in R are green, it means that all the simples in Hptq are
in H. Therefore, there exists a permutation π P SQ0

such that Siptq » Sπpiq for
any i P Q0 and it follows from [Kel12, Corollary 7.11] that π induces the wanted
isomorphism of ice quivers.

Similarly, if all the non-frozen vertices in R “ Qptq are red, it means that all the
simples in Hptq are in ΣH. Therefore, there exists a permutation π P SQ0

such
that Siptq » ΣSπpiq for any i P Q0 and it follows from [Kel12, Corollary 7.11] that
π induces the wanted isomorphism of ice quivers. �

7.2. Proof of Proposition 1.21.

Proof. We know from Plamondon’s thesis [Pla11b, Example 4.3] that there exists
a (Jacobi-finite) non-degenerate potential W on Q such that there is no sequence
of mutations in the cluster category CQ,W joining the cluster-tilting object ΓQ,W to
the cluster-tilting object ΣΓQ,W . Therefore, ΓQ,W and ΣΓQ,W are in two different
connected components of the mutation graph of cluster-tilting objects in CQ,W . In
particular, if H denotes the canonical heart in DfdΓQ,W , there is no sequence of

forward mutations from H to ΣH and therefore, there is no path from r pQs to r qQs

in
ÝÝÑ
EGpQq. Hence, greenpQq “ H. �

7.3. On Jacobi-infinite quivers with potential. In this short section we give a
criterion for the non-existence of maximal green sequences. We recall that a quiver
with potential is called Jacobi-infinite if the corresponding (completed) Jacobian
algebra is infinite dimensional over k.

Proposition 7.1. Let pQ,W q be a Jacobi-infinite quiver with potential. Assume
that it is non-degenerate. Then greenpQq “ H.

Proof. Let Γ be the Ginzburg dg-algebra corresponding to pQ,W q. Let H denote
the canonical heart in DfdΓ. We claim that ΣH is not reachable from H by iterated
forward mutations of hearts in DfdΓ. Indeed, if so, we would obtain a sequence of
mutations from Γ to ΣΓ in the generalised cluster category C associated to pQ,W q,
see [Kel12, Pla11a]. Therefore, Γ and ΣΓ are in the same connected component
of the cluster-tilting graph of C. Fix thus a sequence i “ pi1, . . . , ilq such that
Γ “ µipΣΓq. Then it follows from [Pla11a], that this gives a sequence of mutations of
decorated representation in the sense of [DWZ10] from the decorated representation
of pQ,W q corresponding to HomCpΓ,ΣΓq “ 0 to the decorated representation of
µipQ,W q of HomCpΓ,Γq » EndCpΓq » J pQ,W q which is infinite dimensional by
hypothesis. However, mutations of finite-dimensional decorated representations of
quivers with potential are finite-dimensional, a contradiction. Thus, there is no
sequence of forward mutations from H to ΣH and therefore, there is no path from

r pQs to r qQs in
ÝÝÑ
EGpQq. Hence, greenpQq “ H. �

Example 7.2. Consider the McKay quiver

0

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

��✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬

��✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬✬
✬

Q : 1

��✵
✵✵
✵✵
✵✵

//// 4.

``❇❇❇❇❇❇❇❇❇

yysss
sss

sss
sss

s

yysss
sss

sss
sss

s

2 //

KK✗✗✗✗✗✗✗✗✗✗✗✗✗✗

KK✗✗✗✗✗✗✗✗✗✗✗✗✗✗
3

FF✌✌✌✌✌✌✌

ee❑❑❑❑❑❑❑❑❑❑❑❑❑

ee❑❑❑❑❑❑❑❑❑❑❑❑❑



24 T. BRÜSTLE, G. DUPONT AND M. PÉROTIN

Then the main theorem of [TV10] asserts that Q admits a non-degenerate potential
such that the corresponding Jacobian algebra is infinite dimensional. Therefore, it
follows from Proposition 7.1 that Q has no maximal green sequences.

8. Proofs of Section 3

8.1. Proof of Theorem 3.4.

Proof. A Dynkin quiver is acyclic so that the first point follows from Lemma 1.20.
For the second point, consider the Weyl group W associated to Q with simple

reflections si, with i P Q0. Let w0 be the longest element in W and fix a reduced
expression w0 “ si1 ¨ ¨ ¨ sir so that r “ |Φ`pQq|. Then it is well-known that i “
pi1, . . . , irq is an admissible sequence of sinks in Q. For any 1 ď k ď r, we set

T pkq “ µ`
ik

˝ ¨ ¨ ¨ ˝ µ`
i1

pHq

with the convention that T p0q “ H .
Since i is an admissible sequence of sinks, for any 1 ď k ď r, the vertex ik is

a sink in the quiver of the endomorphism ring of T pk´1q so that T pkq is obtained
from T pk´1q by a simple APR-tilt (see [APR79]). Therefore, the left aisles D

ď0

T pk´1q

and D
ď0

T pkq differ by a single indecomposable object, namely T
pk´1q
ik

. Moreover, it

is well-known that T prq » Hr1s. Therefore, we obtained a sequence of forward
mutations

H
µ

`
i1ÝÝÑ T p1q

µ
`
i2ÝÝÑ ¨ ¨ ¨

µ
`
irÝÝÑ T prq » Hr1s

which is the longest possible. Thus i is a maximal green sequence of the longest
possible length and we have ℓmaxpQq “ r “ |Φ`pQq|. �

9. Proofs of Section 4

9.1. Proof of Lemma 4.1.

Proof. The first point follows from Theorem 3.4. We now prove the second point.
Let pi1, i2q be an admissible numbering of Q0 by sources. Then it was proved in
Lemma 1.20 that pi1, i2q is a maximal green sequence for Q. If there exists another
maximal green sequence, then it is necessarily obtained by iterated mutations at
sinks of the form i2i1i2i1 ¨ ¨ ¨ . Let H “ kQ, T p0q “ H and for any k ě 1, let

T pkq “

"
µ`
i2

pT pk´1qq if k is odd,

µ`
i1

pT pk´1qq if k is even.

Then, as in the proof of Theorem 3.4, the left aisles D
ď0

T pk´1q and D
ď0

T pkq differ by a

single indecomposable object, namely T
pk´1q
ik

. However, the left aisle Dď0
Hr1s contains

infinitely many more objects than the left aisle D
ď0
H so that T pkq fi Hr1s for any

k ě 1. Therefore, there is no maximal green sequence beginning with i2 and thus
greenpQq “ tpi1, i2qu. �

9.2. Proof of Theorem 4.2. Let Q be an affine quiver and let H “ kQ. The aim
of this subsection is to prove that greenpQq is a finite set. Before we can prove this
we will need some technical results.

We let S1, . . . , Sn denote the simple H-modules and for any 1 ď i ď n, we denote
by Pi the projective cover of Si and by Ii its injective hull.

As usual, we let D be the bounded derived category of modH with shift functor
r1s. We denote by ΓpDq the Auslander-Reiten quiver of D, by P the preprojective
component of ΓpDq, that is, the connected component containing the projective
H-modules and by I the preinjective component, that is, the connected component
of ΓpDq containing the injective H-modules.



ON MAXIMAL GREEN SEQUENCES 25

We start with a general lemma:

Lemma 9.1. Let H be a representation-infinite connected hereditary algebra. Then
there exists N ě 0 such that for any k ě N , for any projective H-module P and
for any injective H-module I, the H-modules τ´kP and τkI are sincere.

Proof. For any 1 ď i ď n, it is known that the sets
 
τ´kPi

(
kě0

and
 
τkIi

(
kě0

contain only finitely many non-sincere modules, see [ASS05, Ch. IX, Proposition
5.6]. Therefore, there exists Ni ě 0 such that τ´kPi and τkIi are sincere for any
k ě Ni. Then N “ max tNi | 1 ď i ď nu is as wanted. �

Proposition 9.2. Assume that H is tame. Let T be a tilting object with its inde-
composable summands in P and let and T 1 be a tilting object with its indecomposable
summands in I. Then the number of oriented paths from T to T 1 in

ÝÑ
KD is finite.

Proof. We can write

T “
nà

j“1

τkjPj and T 1 “
nà

i“1

τ liIi

with kj , li P Z for any 1 ď i, j ď n.

Fix an oriented path T “ T p0qÝÑT p1qÝÑ ¨ ¨ ¨ ÝÑT pp´1qÝÑT ppq “ T 1 in
ÝÑ
KD

and let T pmq be the first silting object in that path with a direct summand in
the component I. We denote by τ li`lIi with l ě 0 this indecomposable direct
summand. Since H is tame, any tilting object in D has at most n´2 indecomposable
regular modules as direct summands, see [Rin84]. The same holds for any silting
object S such that T ď S ď T 1. Thus, T pmq has at least one direct summand in P ,
which we denote by τkj´kPj with k ě 0.

We have

Ext1Dpτ li`lIi, τ
kj´kPjq » DHomDpτkj´kPj , τ

li`l`1Iiq

» DHomDpPj , τ
li´kj`l`k`1Iiq,

and this is non-zero for k ` l ě N ` kj ´ li ´ 1 according to Lemma 9.1. Therefore,
there exists K ą 0 and L ą 0 such that any tilting object on an oriented path
from T to T 1 in KD has its indecomposable summands in P of the form τkj´kPj

for some 1 ď j ď n and 0 ď k ď K and its indecomposable summands in I of the
form τ li`lIi for some 1 ď i ď n and 0 ď l ď L.

Then, if τkj1 ´k1

Pj1 is another indecomposable summand of a silting object on an

oriented path from T to T 1 in
ÝÑ
KD, we have k1 ě 0 and

Ext1Dpτkj1 ´k1

Pj1 , τkj´kPjq » DHomDpPj , τ
kj1 ´kj`k´k1

Pjq,

which is non-zero for k1 ě N ` k` kj1 ´ kj according to Lemma 9.1. Therefore, the
number of isomorphism classes of indecomposable summands in P of silting objects
arising on an oriented path from T to T 1 in

ÝÑ
KD is finite.

Dually, the number of isomorphism classes of indecomposable summands in I of
tilting objects arising on an oriented path from T to T 1 in KD is finite.

Since there are only finitely many rigid regular H-modules, the number of iso-
morphism classes of regular indecomposable summands of tilting object arising on
an oriented path from T to T 1 in KD is also finite. Therefore, the number of iso-
morphism classes of silting objects arising on an oriented path from T to T 1 in KD

is finite, proving the theorem. Figure 17 sums up the situation.
�

We can now prove Theorem 4.2.
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H Hr1s

Figure 17. The Auslander-Reiten quiver of DbpmodHq for a
tame hereditary algebra. Shaded areas correspond to where silting
objects located on a path from H to Hr1s can have their indecom-
posable summands.

Proof of Theorem 4.2: Let Q be an affine quiver and H “ kQ. Then a maximal
green sequence for Q is an oriented path from H to Hr1s in

ÝÑ
KD. Since H has its

indecomposable summands in P and Hr1s has its indecomposable summands in I,
the result is a direct consequence of Proposition 9.2. �

9.3. Proof of Theorem 4.4. In this section, we want to prove that greenpQq is a
finite set for an acyclic quiver with 3 vertices.

We first show the following proposition.

Proposition 9.3. Let Q be a connected wild quiver with three vertices and H “ kQ.
Assume that T is a silting object arising on a path from H to Hr1s in

ÝÝÑ
EGpQq. Then

T is not a regular tilting H-module.

Proof. Consider a path from H to Hr1s in
ÝÝÑ
EGpQq containing a regular tilting

H-module and let R1 be the first regular tilting H-module arising on this path.

Therefore, this path contains an arrow R
µv

ÝÑ R1 where R1 “ R{Rv ‘ R˚
v with Rv

is preprojective, say Rv » τ´sPj , and R˚
v , R{Rv are regular.

Since R is tilting, we get

0 “ Ext1DpR{Rv, Rvq

» DHomDpRv, τpR{Rvqq

» DHomDpτ´sPj , τpR{Rvqq

» DHomDpPj , τ
s`1pR{Rvqq

» DHomHpPj , τ
s`1pR{Rvqq.

Therefore, τs`1pR{Rvq is an A{pejq-module which is rigid (since τs`1pR{Rvq is rigid
as an A-module) and, since it has |Q0| ´ 1 indecomposable summands, it is tilting
as a A{pejq-module and thus, τs`1R1 “ τs`1pR{Rvq ‘ τs`1R˚

v is a regular tilting
H-module satisfying the hypothesis of [Ung96a, Theorem 4.3]. Hence, any tilting

module in the same connected component of
ÝÑ
KmodH as τs`1R1 contains at least

two τ -sincere indecomposable summands. These indecomposables are in particular
regular H-modules. Therefore, the connected component of

ÝÑ
KmodH containing

τs`1R1 does not contain any preprojective, nor preinjective module.
Now if there is a path R1ÝÑ ¨ ¨ ¨ ÝÑHr1s in

ÝÝÑ
EGpQq, since none of the modules in

that path have a projective direct summand, we get a path τR1ÝÑ ¨ ¨ ¨ ÝÑ τHr1s »

DH in
ÝÝÑ
EGpQq and, by convexity of

ÝÑ
KmodH inside

ÝÝÑ
EGpQq (Theorem 6.1), we obtain

a path τR1ÝÑ ¨ ¨ ¨ ÝÑDH in
ÝÑ
KmodH , a contradiction. �
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We can now prove Theorem 4.4.

Proof of Theorem 4.4: Without loss of generality we can restrict to the case where
Q is connected. If it is Dynkin or affine, the result is known, see Theorems 3.1 and
4.2. We can thus restrict to the case where Q is wild. We let H “ kQ. The number
of maximal green sequences for Q equals the number of paths from H to Hr1s in
ÝÝÑ
EGpQq.

Consider such a path and let T be the last silting object along this path which is
without summand of the form τ lIi for l ě ´1 and i P Q0. The next silting object
in the path is thus µkpT q “ T {Tk ‘ T ˚

k with T ˚
k » τ lIi for some l ě ´1 and some

i P Q0.
Assume first that T {Tk is a regular H-module. If T {Tk is sincere, since µkpT q is

tilting, we get

0 “ Ext1DpT ˚
k , T {Tkq

» DHomDpT {Tk, τT
˚
k q

» DHomDpT {Tk, τ
l`1Iiq

» DHomDpτ´pl`1qpT {Tkq, Iiq

» DHomHpτ´pl`1qpT {Tkq, Iiq

so that τ´pl`1q is almost complete, non-sincere and regular. Therefore, it follows
from [HU05, Proposition 7.3] that its unique complement, which is τ´pl`1qTk, is
regular. Therefore, Tk is also regular and so is T “ T {Tk ‘ Tk, which contradicts
Proposition 9.3.

If T {Tk is non-sincere, then it is almost complete, non-sincere and regular and it
again follows from [HU05, Proposition 7.3] that τ tpT {Tkq is sincere for any t ‰ 0.
According to Proposition 9.3, T is not regular so that necessarily Tk » τ´lPj for
some j P Q0 and some l ě 0. Since T is silting, we get

0 “ Ext1DpT {Tk, Tkq

» Ext1DpT {Tk, τ
´lPjq

» DHomDpτ´lPj , τpT {Tkqq

» DHomDpPj , τ
l`1pT {Tkqq.

But we know that τ tpT {Tkq is sincere for any t ‰ 0. Therefore, l “ ´1 and thus
Tk » τPj » Iir´1s is in modHr´1s, which is a contradiction. Hence, T {Tk cannot
be regular.

Thus, T contains at most one regular direct summand and dually, the first silting
object without preprojective direct summand contains at most one regular direct
summand. Then, as in the proof of Proposition 9.2, it follows from Lemma 9.1 that
the non-regular summands of silting objects between H and Hr1s run over a finite
set of isomorphism classes. And since we cannot mutate twice consecutively at the
same vertex along a maximal green sequence, we cannot mutate twice a regular
summand consecutively. Therefore, there is necessarily a finite number of maximal
green sequences for Q. �

Appendix A. Outline of the algorithm

A.1. Motivations. Given a cluster quiver Q, we would like to answer the two
following questions:

(1) Does there exist a maximal green sequence for Q, i.e is greenpQq ‰ H ?
(2) If yes, how many maximal green sequences of each length are there in

greenpQq, i.e what is |greenlpQq| for any ℓmin pQq ď l ď ℓmaxpQq.
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It appears that a computational approach is well suited to answer these two ques-
tions. The second one requires an enumeration of a considerable number of possi-
bilities, either explicit as the first following subsection shows, or implicit for greater
speeds as explained in Section A.3.

A.2. Maximal green sequences enumeration principles. In order to answer
these two questions, a direct approach consists in trying every possible green se-
quences. Starting from the initial cluster quiver, we will mutate at every green
vertex of the corresponding framed quiver, get a new set of ice quivers, pick one,
mutate at every green vertex. . . and so on, up to finding a quiver without green
vertices. The detailed algorithm is given in Algorithm 1. This algorithm is imple-
mented and available, see [DP12].

In this algorithm:

‚ the last method applied to a list pops the last element of the chained list;
‚ append, applied to a list, adds an element to the end;
‚ getNextGreenVertex, applied to a quiver, pops one green vertex from the

set of unexplored green vertices, returns NULL when all vertices are ex-
plored;

‚ mutate(i), applied to a quiver Q, returns the quiver obtained from mutat-
ing Q on the vertex i;

‚ mutationLength(), applied to a quiver, returns the length of the list of
mutations applied to the quiver.

This algorithm is a typical depth-first search: using the green vertices list of the
quivers as the branching element, it will consider the initial quiver as the root of a
search tree and explore branches constructed by sequences of green mutations.

Algorithm 1 Depth-first search algorithm.

Require: pQ the framed quiver of a cluster quiver Q, L an empty chained list green,
an array of integers, with all values equal to 0

Ensure: @i, greenris “ |greenip pQq|

L.append( pQ);
while L ‰ H do

w Ð L.lastpq
if gpwq ‰ 0 then

while i Ð w.getNextGreenV ertexpq do

x Ð w.mutatepiq
if gpxq ‰ 0 then

L.append(x);
else

greenrx.mutationLengthpqs Ð greenrx.mutationLengthpqs ` 1

end if

end while

else

greenrw.mutationLengthpqs Ð greenrw.mutationLengthpqs ` 1

end if

end while

Typical problems with such an algorithm arise with green sequences of infinite
lengths (these may only appear if Q is not of finite cluster type). These will render
the algorithm inefficient as it has no way of detecting them. Practical, yet imperfect,
solutions include limiting the exploration up to a certain depth and/or the absolute
values of the entries of the c-matrix.
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Even if this algorithm is efficient in terms of memory footprint, and has provided
some preliminary results, its CPU usage remains overwhelming and limits its usage
to small instances. However, due to its explicit and exhaustive approach it allows to
list all the maximal green sequences encountered, an additional information which
might be of interest.

Remark A.1. Translating the definition of a maximal green sequence in the lan-
guage of c-vectors and exchange matrices instead of that of ice quivers, it is possi-
ble to define maximal green sequences for a skew-symmetrisable exchange matrix
B P MnpZq. There is however a slight difference due to the fact that the sign-
coherence for c-vectors is still conjectural in the skew-symmetrisable case, and
therefore, so is the analogue of Theorem 1.6. Thus instead of mutating at green
vertices, we will mutate at vertices which are not red. With this modification, since
the input of Algorithm 1 only deals with the adjacency matrix BpQq of the clus-
ter quiver Q and since the implemented mutation rule is the matrix mutation rule
given in Definition 1.1, Algorithm 1 also applies to skew-symmetrisable exchange
matrices. Some results obtained by this mean are provided in Appendices B.3 and
B.7.

A.3. Isomorphism discrimination. The CPU intensive nature of Algorithm 1
could be greatly reduced using the fact that along the exploration tree many nodes
may be isomorphic. Hence, branches can be cut and the computation can be
reduced. This however complexifies the algorithm:

(1) Explored quivers must be stored in memory, in order to be able to test
isomorphims;

(2) To limit the cost of searches in memory, complex data structures must be
set up;

(3) Specific algorithms must be unrolled when an isomorphism is found with a
quiver along a path leading to a maximal green sequence.

While the first two points are pure computer science, the last one requires expla-
nations: let i “ pi1, . . . , ilq be a maximal green sequence. For 1 ď k ď l, we let
pQpkq “ µik ˝ ¨ ¨ ¨ ˝ µi1p pQq. Let j “ pj1, . . . , jpq be a green sequence such that µjp pQq

is isomorphic to pQpkq and j ‰ pi1, . . . , ikq, then it can be asserted that j is the
beginning of another maximal green sequence for Q with length p` l´k. Addition-
nal care must be taken when branches are cut because of isomorphisms to quivers
which do not lead to maximal green sequences.

Implementing this algorithm allows a quick walk of the exploration tree. How-
ever, if the initial two questions are answered, the possibility to list all the maximal
green sequences explicitly is lost: the enumeration becomes implicit.

Remark A.2. The implementation of this algorithm provided in [DP12] relies on
nauty for the detection of isomorphims [McK81]. Therefore, it only works for
adjacency matrices of (cluster) quivers, that is for skew-symmetric matrices and
not for valued quivers. Therefore, the (optional) feature of isomorphism detection
cannot be used for skew-symmetrisable exchange matrices and one has to use the
implementation of Algorithm 1 in this case.

Appendix B. Examples

B.1. Rank two oriented exchange graphs. Any connected valued quiver with
two vertices is either of infinite type or of type A2, B2, C2 or G2. We list below
the corresponding oriented exchange graphs.
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Figure 18. The oriented exchange graph of type A2.

Figure 19. The oriented exchange graph of type B2 or C2.

Figure 20. The oriented exchange graph of type G2.

Figure 21. Oriented exchange graph of of rank two in infinite type.

B.2. Examples of simply-laced cluster finite quivers.

B.2.1. Dynkin type A. Figures 22, 23 and 24 show lengths of maximal green se-
quences for certain quivers of finite cluster type A.

B.2.2. Dynkin type D. Figure 25 shows the lengths of the maximal green sequences
for the cluster finite quivers of type D4.
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Q 1 // 2 // 3 1 // 2 3oo 2

��❂
❂❂❂

1

@@✁✁✁✁
3oo

|greenpQq| 9 10 9

Length

3 1 2

4 4 2 6

5 2 2 3

6 2 4

Figure 22. Maximal green sequences for quivers in the mutation
class of type A3.

Q 1 // 2 // 3 // 4 1 2oo // 3 // 4 1 // 2 3oo // 4 2

��✁✁✁
✁

1 // 3

^^❂❂❂❂
// 4

|greenpQq| 98 141 179 101

Length

4 1 3 5

5 10 11 9 12

6 22 13 9 21

7 22 18 16 33

8 18 25 28 25

9 13 30 42 10

10 12 41 70

Figure 23. Maximal green sequences for quivers in the mutation
class of type A4.

B.2.3. Dynkin type E. Consider the following quiver of type E6:

Q : 1 // 2 // 3

��

// 4 // 5.

6

Then we have ℓmin pQq “ 6, ℓmaxpQq “ 36 and |greenpQq| “ 253 085 705 387.
Consider the following quiver of type E7:

Q : 1 // 2 // 3 // 4

��

// 5 // 6.

7

Then we have ℓmin pQq “ 7, ℓmaxpQq “ 63 and

|greenpQq| “ 372 133 972 845 031 649 851 164.

Consider the following quiver of type E8:

Q : 1 // 2 // 3 // 4 // 5

��

// 6 // 7.

8

Then we have ℓmin pQq “ 8, ℓmaxpQq “ 120 and |greenpQq| „ 5.641 ¨ 1051.

B.3. Examples of non-simply-laced cluster finite quivers.
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Q A2 A3 A4 A5 A6 A7

|greenpQq| 2 9 98 2 981 340 549 216 569 887

Length

2 1

3 1 1

4 4 1

5 2 10 1

6 2 22 20 1

7 22 112 35 1

8 18 232 392 56

9 13 382 1 744 1 092

10 12 348 4 474 9 220

11 456 8 435 40 414

12 390 12 732 123 704

13 420 17 337 276 324

14 334 21 158 550 932

15 286 27 853 917 884

16 33 940 1 510 834

17 41 230 2 166 460

18 45 048 3 370 312

19 50 752 4 810 150

20 41 826 7 264 302

21 33 592 10 435 954

22 15 227 802

23 20 089 002

24 27 502 220

25 32 145 952

26 36 474 460

27 30 474 332

28 23 178 480

29

Figure 24. Maximal green sequences for linearly oriented quivers
of Dynkin type An, with n ď 7.

B.3.1. Dynkin type B. Figure 26 shows the lengths of the maximal green sequences
for the cluster finite valued quivers of type B3.

B.4. Dynkin type F4. Figure 27 shows the maximal green sequences for valued
quivers of type F4.

B.5. Examples of simply-laced affine types. For a quiver Q of affine type, we
have (non-maximal) green sequences of infinite lengths. However, if Conjecture 1.22
holds, in order to list all the maximal green sequences, it is enough to find some l ě 1

for which 0 ă |greenďlpQq| “ |greenďl`1pQq| and then greenpQq “ greenďlpQq. In
the tables below, the empty cells should be read as zeros.

B.5.1. Examples in types rA. Figure 28 shows the maximal green sequences for cer-

tain affine quivers of type rA. We note that for all the values of n for which we
could perform the computations, the empirical maximal length of a quiver of type
rAn,1 is npn`3q

2
.
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Q 3

1 // 2

��❂
❂❂❂

@@✁✁✁✁

4

3

1 2oo

��❂
❂❂❂

@@✁✁✁✁

4

2 // 3

��✍✍
✍✍
✍✍

1

FF✍✍✍✍✍✍
4oo

2

��

3oo

1

FF✍✍✍✍✍✍
4

FF✍✍✍✍✍✍
oo

|greenpQq| 250 468 112 150

Length

4 2 6

5 10 6 6

6 10 6 32 24

7 26 18 44 40

8 16 24 20 22

9 18 24 16 18

10 24 24 16

11 72 144 24

12 72 216

13

14

15

Figure 25. Maximal green sequences for quivers in the mutation
class of type D4.

Q 1 // 2
p1,2q// 3 1 2oo 3

p2,1qoo 1 // 2 3
p2,1qoo 1 2oo p1,2q// 3 2

p1,2q

��❂
❂❂❂

1

@@✁✁✁✁
3

p2,1q
oo

|greenpQq| 14 7 18 18 12

Length

2

3 1 3 2 2

4 2 3 1 1 2

5 2 1 1 4

6 2 1 2 2 4

7

8 3 4 4 2

9 4 8 8

10

Figure 26. Maximal green sequences for valued quivers in the
mutation class of type B3.
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Q 1 // 2
p1,2q// 3 // 4 1 // 2 3

p2,1qoo // 4
|greenpQq| 40 366 163 282

Length

3

4 1 5

5 6 8

6 14 2

7 10 8

8 8 4

9 18 10

10 44 48

11 32 48

12 20 39

13 48 136

14 35 65

15 78 100

16 181 330

17 136 260

18 665 1 104

19 1 668 4 072

20 2 002 5 843

21 4 592 12 672

22 11 643 42 391

23 13 420 62 676

24 5 741 33 461

Figure 27. Maximal green sequences for valued quivers of type F4.



O
N

M
A

X
IM

A
L

G
R

E
E

N
S
E

Q
U

E
N

C
E

S
3
5

Q 1 // // 2 2

��❂
❂❂❂

1

@@✁✁✁✁
// 3

2 // 3

��❂
❂❂❂

1

@@✁✁✁✁
// 4

2

��❂
❂❂❂

1

@@✁✁✁✁

��❂
❂❂❂

4

3

@@✁✁✁✁

2

1

@@✁✁✁✁

��❂
❂❂❂

4

^^❂❂❂❂

��✁✁✁
✁

3

2 // 3 // 4

��❂
❂❂❂

1

@@✁✁✁✁
// 5

2 // 3 // 4 // 5

��❂
❂❂❂

1

@@✁✁✁✁
// 6

|green0pQq| 1 5 75 100 100 4 882 1 645 136

Length

2 1

3 1

4 2 1 2 4

5 2 8 4 4 1

6 9 12 8 18 1

7 11 24 20 73 33

8 22 18 16 116 314

9 24 16 16 162 1 036

10 24 32 290 2 375

11 520 4 176

12 1 076 7 734

13 1 380 15 830

14 1 246 34 178

15 72 986

16 143 626

17 252 023

18 371 780

19 397 012

20 342 032

21

Figure 28. Maximal green sequences for type rA quivers.
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B.6. Examples in types rD. Figure 29 shows the lengths of maximal green se-

quences for the affine quivers of type rD4. It is interesting to note in that example
that even if the number of maximal green sequences depend on the orientations,
the minimal lengths and the empirical maximal lengths do not.

3

1 // 2 //

@@✁✁✁✁

��❂
❂❂❂
4

5

1

��❂
❂❂❂

3

2

@@✁✁✁✁

��❂
❂❂❂

4

@@✁✁✁✁
5

1

��❂
❂❂❂

3

��✁✁✁
✁

2

4

@@✁✁✁✁
5

^^❂❂❂❂

|green0pQq| 286 068 210 284 641 496

Length

5 6 4 24

6 36 24 24

7 36 40 24

8 108 168 72

9 150 144 120

10 252 272 240

11 348 400 384

12 1 266 1 144 960

13 2 394 1 720 2 400

14 2 208 1 792 4 224

15 3 192 2 912 5 760

16 5 976 4 928 9 792

17 10 512 8 192 19 584

18 13 056 9 984 24 192

19 16 704 12 672 27 648

20 38 016 31 104 69 120

21 98 496 72 576 228 096

22 93 312 62 208 248 832

Figure 29. Maximal green sequences for affine quivers of type rD4.

For any n ě 4, we denote by Qn the quiver of affine type rDn given by

1

��❀
❀❀
❀ n

Qn : 3 // ¨ ¨ ¨ // n ´ 1

88rrrrrr

&&▲▲
▲▲▲

2

AA✄✄✄✄
n ` 1.

Then Figure 30 shows the values of ℓmin pQnq, ℓ0maxpQnq and |green0pQnq| for certain
small values of n. We note that for all the values of n for which we performed the
computations, we obtained ℓ0maxpQnq “ 2n2 ` 6n ` 2.

B.6.1. Examples in types rE. For the following quiver of type rE6

7

��
6

��
Q : 1 3oo 6oo // 4 // 2
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n ℓmin pQnq ℓ0
maxpQnq |green0pQnq|

4 5 22 210 284

5 6 38 371 667 875 684

6 7 58 528 229 038 497 072 158 920

7 8 82 1 334 686 668 231 927 938 739 442 459 338 512

Figure 30. Maximal Green Sequences for affine quivers of type rDn.

we obtain

ℓmin pQq “ 7, ℓ0maxpQq “ 78

and

green0pQq “ 212 876 586 503 402 188 760 490 821 544.

For the following quiver of type rE7

9

Q : 1 3oo 5oo 8oo //

OO

6 // 4 // 2

we obtain

ℓmin pQq “ 8, ℓ0maxpQq “ 159

and green0pQq „ 1.976 ¨ 1069.

B.7. Examples of non-simply-laced affine types. For affine types, we have
(non-maximal) green sequences of arbitrary lengths. Therefore, we could only com-
pute greenďlpQq for various values of l. In the table below we chose l “ 25. The
empty or non-appearing cells for l ď 25 should be read as zeros.

1
p2,1q// 2

p1,2q// 3 1
p2,1q// 2 3

p2,1qoo 1 2
p1,2qoo p1,2q// 3 2

p1,2q

��❂
❂❂❂

1

p2,1q @@✁✁✁✁
3oo

|greenď25pQq| 7 6 6 7

Length

2

3 1 2 2

4

5 4 2 2 4

6

7 2 2 2 3

8

Figure 31. Maximal green sequences for valued quivers in the

mutation class of type rB2.

B.8. An example from a surface without boundary. Consider the following
triangulation T of the sphere with four punctures.
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As defined in [FST08], the quiver QT corresponding to this triangulation is the
following.

QT :

Then a direct computation shows that

ℓmin pQT q “ 12, ℓ0maxpQT q “ 46

and

|green0pQT q| “ 1 044 863 666 576.

B.9. An exceptional mutation-finite type. Consider the following quiver

2 //// 3

��✄✄
✄✄

Q : 6 1oo

OO

��
4 //// 5

]]❀❀❀❀

which first appeared in [DO08] as an example of mutation-finite quiver which is not
arising from a surface. Then we obtained

ℓmin pQq “ 10, ℓ0maxpQq “ 30 and |green0pQq| “ 119 819 022.
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