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ON MAXIMAL GREEN SEQUENCES

T. BRUSTLE, G. DUPONT AND M. PEROTIN

ABsTrACT. Maximal green sequences are particular sequences of quiver mu-
tations which were introduced by Keller in the context of quantum dilogarithm
identities and independently by Cecotti-Cérdova-Vafa in the context of super-
symmetric gauge theory. Our aim is to initiate a systematic study of these
sequences from a combinatorial point of view.

Interpreting maximal green sequences as paths in various natural posets
arising in representation theory, we prove the finiteness of the number of max-
imal green sequences for cluster finite quivers, affine quivers and acyclic quivers
with at most three vertices. We also give results concerning the possible num-
bers and lengths of these maximal green sequences.

Finally we describe an algorithm for computing maximal green sequences
for arbitrary valued quivers which we used to obtain numerous explicit exam-
ples that we present.
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INTRODUCTION

Maximal green sequences are maximal chains in a partially ordered set that
arises from a cluster exchange graph once an initial seed is fixed. The name "mazx-
imal green sequence" appears in [Kell1b| where these sequences are used to obtain
quantum dilogarithm identities. Moreover, the same sequences appear in theoreti-
cal physics where they yield the complete spectrum of a BPS particle, see [CCV11]
§84.2]|.

The partial order relation has been studied by Happel and Unger on a subgraph
of the cluster exchange graph [Ung96a, [Ung96b, [HUO5|, and recently a number of
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representation-theoretic interpretations of the poset structure of the whole cluster
exchange graph has been given [KQ12| [KY12, TR12].

The theory of cluster algebras is related to various other fields, and thus the
cluster exchange graph can be interpreted in many ways. For instance one can view
it as a generalised associahedron, which is known to carry a poset structure (the
Tamari poset). While there are certainly a lot more interesting connections, we will
focus in this paper mainly on the combinatorial description of the poset structure
by quiver mutations as given in [Kelllb], and we intend to initiate a systematic
study of maximal green sequences applying representation-theoretic techniques.

The main questions addressed in this paper are: to find sufficient criteria for the
existence of maximal green sequences (true for acyclic quivers but not in general)
and to study the finiteness of the number of maximal green sequences and their
possible lengths.

Organisation of the article. In Section [, we introduce the notion of maximal
green sequences in elementary terms and present some general results. When the
proofs do not require any further background we present them in this section. When
they do require some additional background, they are postponed to Section [7l

The short Section 2] makes the appearance of maximal green sequences explicit
in the context of theoretical physics.

In Section [3, we study maximal green sequences for quivers of finite cluster type.
As before, the proofs requiring additional background are postponed to Section 8

Section Ml presents an analysis of the maximal green sequences for acyclic quivers
of infinite representation types; the corresponding proofs are found in Section

The representation-theoretical background underlying the proofs and (part of)
the motivations of this article can be found in Section [b] where we recall the var-
ious connections between maximal green sequences and some classical posets in
representation theory.

In this spirit, we present in Section [6] additional results on the connections be-
tween maximal green sequences and the classical Happel-Unger’s poset of tilting
modules over an algebra, see [HUQS].

Sections [[HI contain the missing proofs.

Finally, Appendix[Al presents an algorithm that we used for computing numerous
explicit examples which can be found in Appendix [Bl This latter appendix also
contain results concerning maximal green sequences for valued quivers; except in
this very last part of the article, valued quivers were not considered since the
theoretical context for their study is still conjectural under several aspects.

1. GREEN SEQUENCES

Without further specification, quivers will always be finite connected oriented
graphs and cluster quivers will be quivers without loops nor oriented 2-cycles. A
quiver is called acyclic if it has no oriented cycles. Given a quiver @, we denote by
Qq its set of vertices and by Q) its set of arrows.

1.1. Cluster algebras. Introduced in [FZ02], cluster algebras are commutative
rings equipped with a distinguished set of generators, the cluster variables, gathered
into possibly overlapping subsets of pairwise compatible variables, the clusters,
defined recursively with a combinatorial process, the mutation. The dynamics of
this mutation process are encoded in a combinatorial data, the exchange matriz.
An exchange matriz is a matrix B = (b;;) € My nm(Z) for some m,n > 0 such
that the principal part of B, that is, the square submatrix B = (b;j)1<ij<n €
M, (Z) is skew-symmetrisable, that is, there exists a diagonal matrix D € M,,(Z)
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with positive diagonal entries such that DB is skew-symmetric. Abusing terminol-
ogy we say that B itself is skew-symmetrisable, or that it is skew-symmetric when
BY is so.

Given a skew-symmetrisable exchange matrix B € M,, ;,+m (Z), we denote by Ap
the corresponding cluster algebra, see [FZ07] for details.

Definition 1.1 (Matrix mutation). Let B € My, n4+m(Z) be skew-symmetrisable.
Then for any 1 < k < n, the mutation of B in the direction k is the skew-
symmetrisable matrix i (B) = (b};) € My y4m(Z) given by

b, _ *bij ifiZkOrjIk,
K bij + I:bik]JrI:bkj]Jr — [bik]f[bkj]f otherwise,
where [z]4+ = max(z,0) and [z]- = min (z,0) for any z € Z.

It is easy to see that up(ur(B)) = B for any 1 < k < n and that ug(B) is
skew-symmetric if and only if B is skew-symmetric. In this latter case, we say that
Ap is simply-laced and it is usually more convenient to use the formalism of ice
quivers instead of exchange matrices.

1.2. Ice quivers and their mutations. An ice quiver is a pair (Q, F') where @
is a cluster quiver and F' < @ is a (possibly empty) subset of vertices called the
frozen wvertices such that there are no arrows between them. For simplicity, we
always assume that Qo = {1,...,n + m} and that F = {n + 1,...,n + m} for some
integers m,n = 0. If F is empty, we simply write Q for (Q, &).

We associate to (Q, F) its adjacency matriz B(Q,F) = (bi;) € My n+m(Z) such
that

bij = [{i—j €@} |- [{j—ic @i}

forany 1 <i<mnandanyl<j<n+m.

The map (Q, F) — B(Q, F) induces a bijection from the set of ice quivers to the
set of skew-symmetric exchange matrices. Therefore, to any ice quiver (Q, F) we
can associate the cluster algebra Ag r)y = Ap(q,r)-

Definition 1.2 (Quiver mutation). Let (Q, F) be an ice quiver and k € Qg be a
non-frozen vertex. The mutation of @ at k is defined as the ice quiver (ui(Q), F)
where py(Q) is obtained from @ by applying the following modifications:

(1) For any pair of arrows i - k LA j in @, add an arrow i ﬂj in pg(Q);
*
(2) Any arrow i = k in @ is replaced by an arrow i <— k in u(Q);
)

(3) Any arrow k LR j in @ is replaced by an arrow k ﬂj in pug(Q);
(4) A maximal collection of 2-cycles is removed.

Then it is easy to see that for any non-frozen vertex k € g, the ice quiver
ux(Q, F) is the ice quiver corresponding to the skew-symmetric matrix p,(B(Q, F)).

Example 1.3. Figure [l shows an example of successive quiver mutations.

Two ice quivers are called mutation-equivalent if one can be obtained from the
other by applying a finite number of successive mutations at non-frozen vertices.
Since mutations are involutive, this defines an equivalence relation on the set of ice
quivers. The equivalence class of an ice quiver (@, F') is called its mutation class
and is denoted by Mut(Q, F).

Two ice quivers (@, F) and (@', F') sharing the same set of frozen vertices are
called isomorphic as ice quivers if there is an isomorphism of quivers ¢ : Q— Q’
fixing F. In this case, we write (Q,F) ~ (@', F) and we denote by [(Q, F)] the
isomorphism class of the ice quiver (Q, F).



4 T. BRUSTLE, G. DUPONT AND M. PEROTIN

A m A
4\1/1\3/6 - 4\@ 3/6
;\2/4 6 M3
1//+ 3/
5 4 “/ N2 5
+ 2/ 6 4 +é 6
1&3/ \1/; 3/

FIGURE 1. An example of quiver mutations.

1.3. Green sequences. From now on, () will always denote a cluster quiver and
we fix a copy Q) = {i’ | i € Qo} of the set Qg of vertices in Q. We will identify Qo
with the set of integers {1,...,n} and Qp with {n + 1,...,2n} in such a way that
for any 1 < i <n, we have i’ = n + 1.

Definition 1.4 (Framed and coframed quivers). The framed quiver associated to
Q is the quiver @ such that:

@0=Q0\—'{il | i€ Qo},
Q1 =@Qru{i—i |ieQo}.

The coframed quiver associated to @ is the quiver @ such that:
Cv20=Q0\—'{il | ieQo},
Cv21=Ql\—l{i/—>i | i€ Qo}.

If @ is an arbitrary cluster quiver, both @ and Cj are naturally ice quivers with

~

frozen vertices Q. Therefore, by Mut(Q) we always mean the mutation class of
the ice quiver (Q, Qp)-

Definition 1.5 (Green and red vertices). Let R € Mut(Q). A non-frozen vertex
1 € Ry is called green if

{i'e Q)| 3j/—ic R} =0
It is called red if
{j'eQ)|Fi—j e R} =0

~

If R is an ice quiver in Mut((Q)) with adjacency matrix B = (b;;) € My, 2n(Z), the
submatrix ¢(R) = (bi n+;)1<ij<n is called the c-matriz of R. For any non-frozen
vertex i € Qp, its ith row ¢;(R) is called the ith c-vector of R and it encodes the
number of arrows between ¢ and the frozen vertices in R. For instance, we have
c(@) = I, and ¢(Q) = —I,,. For more details on c-vectors, we refer the reader
to [FZ07] where they were introduced and to [NZ12, [NC12| [ST12, Nagl1], [Kel12]
where they were studied.

With this terminology, for a quiver R € Mut(@), a vertex i € Qg is green if and
only if the ith c-vector c;(R) has only non-negative entries and it is red if and only

if ¢;(R) has only non-positive entries.
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~

Given a quiver R € Mut(Q), we denote by g(R) the number of green vertices in
R. Note that this number only depends on [R] so that we set g([R]) = g(R).

Theorem 1.6. Let @ be a cluster quiver and R € Mut(@). Then any non-frozen
vertex in Ry is either green or red.

A~

Proof. Let R € Mut(Q). We need to prove that each row of the c-matrix of R
is non-zero and its entries are either all non-negative or all non-positive. This
result, known as the sign-coherence for c-vectors, was established in the case of
skew-symmetric exchange matrices in [DWZ10]. O

For skew-symmetrisable exchange matrices the sign-coherence for c-vectors is
still conjectural, and so is the non-simply-laced analogue of Theorem

Example 1.7. In @, every non frozen vertex is green. In ), any non-frozen vertex
is red.

Definition 1.8 (Green sequences, [Kelllb]). A green sequence for @ is a sequence
i=(i1,...,4;) € Qo such that i; is green in @ and for any 2 < k < [, the vertex i
is green in p;,_, o--- 0 W (@) The integer [ is called the length of the sequence i
and is denoted by £(i).

A green sequence i = (i1,...,4;) is called mazimal if every non-frozen vertex in
p4(Q) is red, where ;(Q) = a0+ 0 i, (Q).

We denote by

green(Q) = {i = (i1,...,4;) € Qo | i is a maximal green sequence for Q}
the set of all maximal green sequences for Q).

Example 1.9. Figure[2shows that the sequence of mutations considered in Figure
[is a maximal green sequence for the oriented triangle. Frozen vertices are coloured
in blue, green vertices in green and red vertices in red.

A m A
4\1/1\3/6 o 4\@ 3/6
.
1//+ 3/
5 4 u/ NQ 5
+ 2/ 6 4 +é 6
LS oo

FIGURE 2. An example of a maximal green sequence.

We refer the reader willing to compute more examples to Bernhard Keller’s java
applet [Kel| or to the QUIVER MUTATION EXPLORER [DP12].
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1.4. The oriented exchange graph. The following proposition will be proved in
Section [7}

A~

Proposition 1.10. Let Q be a cluster quiver and let R € Mut(Q).

(1) If all the non-frozen vertices in Ry are green, then R ~ @ as ice quivers.
(2) If all the non-frozen vertices in Ry are red, then R ~ Q) as ice quivers.

Definition 1.11 (Oriented exchange graph). The oriented exchange graph of Q
is the oriented graph EG(Q) whose vertices are the isomorphism classes [R] of ice
quivers R € Mut(@) and where there is an arrow [R]— [R'] in EG(Q) if and only
if there exists a green vertex k € Ry such that ux(R) ~ R'.

In [FZ03|, Fomin and Zelevinsky introduced the (unoriented) exchange graph of
@ as the dual graph EG(Q) of the cluster complex A(Ag) of the cluster algebra
Ag associated with Q. Vertices in EG(Q) are labelled by the clusters in Ag and
two clusters in EG(Q) are joined by an edge if and only if they differ by a single
cluster variable. Then EG(Q) is an orientation of EG(Q) corresponding to the
choice of an initial seed in Ag with exchange matrix B(Q). The orientation is
defined as follows. Let x and x’ be two adjacent clusters in EG(Q) corresponding
respectively to [R] and [R'] in EG(Q). Assume that x and x’ differ by a single
cluster variable z;, so that R" ~ u;(R). Then the edge joining x and x’ in EG(Q)
is oriented towards x’ if 7 is green in R and towards x otherwise.

As EG(Q) is an n-regular graph, if [R] is a vertex in EG(Q), then there are
g([R]) arrows starting at [R] in EG(Q) and n — g([R]) arrows ending at [R] in
E.C:(Q) (which, by Theorem [[6] correspond to the red vertices in R).

Corollary 1.12. Let Q be a cluster quiver. Then:
(1) EG(Q) has a unique source, which is [Q].
(2) EG(Q) has a sink if and only if [Q] is a vertex in EG(Q) and in this case
[Q] is the unique sink.

Proof. [@] belongs to ﬁ(@) by construction and it is a source in E.C:(Q) since
all the vertices in @ are green. If [R] is another source, then all the vertices in R
are green and then it follows from Proposition that R ~ @, proving the first
point. Now if [R] is a sink in EG(Q), then all its vertices are red and therefore, it
follows from Proposition [[[I0] that R ~ é, proving the second point. Conversely, if
[Q] is in EG(Q), then it is a sink since all its non-frozen vertices are red. O

The following statement rephrases Corollary [[.T2

Proposition 1.13. Let Q be a cluster quiver. Then green(Q) # & if and only if
there is a sink in E—G)(Q) In this case, there is a natural bijection between green(Q)
and the set of oriented paths in E—G)(Q) from its unique source to its unique sink.

O

As it is explained in Section [l ﬁ(@) is isomorphic to the Hasse graph of various
partially ordered sets. In particular, it has the following essential property:

Proposition 1.14. Let Q be a cluster quiver. Then E—G)(Q) has no oriented cycles.
O

1.5. Existence, finiteness and lengths. Let Q be a cluster quiver. We recall
that if i = (¢1,...,4;) is a green sequence for @, then the integer [ is called the
length of i and is denoted by £(i). For any [ > 0, we set

green; (Q) = {i € green(Q) | £(1) = 1},
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greeng; (Q) = {i € green(Q) | £(i) <}
and
lmin (Q) = min {I > 0 | green,(Q) # I} € Zxy,

lax(Q) = max {l = 0 | green;(Q) # T} € Z=p u {0},

with the conventions that iy (Q) = lmax(Q) = 0 if green(Q) is empty.

It is clear that if Q and @’ are isomorphic quivers, then the isomorphism ¢ :
Q— Q' induces an isomorphism EG(Q)— EG(Q’) so that green; (Q)) = green,;(Q’)
for any [ > 1. The following proposition shows a similar result for oppositions:

Proposition 1.15. Let ) be a cluster quiver. Then for any | = 1, there exists a
natural bijection

green, (Q) <> green, (Q°").

Proof. Let i= (i1,...,4) be a maximal green sequence. Then there exists 7 € S,
such that Mi(@) =T~ Cj Moreover, since 7 fixes the frozen vertices and since
the only arrows between frozen and non-frozen vertices in é are the i'— 1 for
i € Qo, the permutation 7 is uniquely determined. Therefore we have fir-1(;,) ©
..o ,U,ﬂ.—l(il)(Q/) = @ where 771(i;) is red in Cj and for any 2 < k < [, the vertex
77 1(iy) is red in Px—1(ip_q) © "7 0 ,U/ﬂ.—l(il)(é). Since the mutations commute with
taking opposite quivers, m=1(;) is green in (Q)°P, the vertex 7~ !(iy) is green in
P (ig_1) @O =133y ((Q)°P) for any 2 < k <l and prr—1(5,) 00 pr—1(3,) ((Q)°P)
has only red vertices. Since (Q)°P = Q°P , it follows that (77 1(0)), ..., 1(iy)) is a
maximal green sequence for Q°P . We therefore get a map green; (Q)— green; (Q°P)
and applying the same argument to Q°P, we get its inverse. Therefore, it is a
bijection. O

Lemma 1.16. Let Q be a cluster quiver and let R, R’ € Mut(@) such that [R]— [R’]
in EG(Q). Then g([R']) = g([R]) — 1.

Proof. Without loss of generality, we can assume that R’ = py(R) for some green
vertex k£ in R. In order to prove the statement, it is enough to prove that any green
vertex in R which is different from k is also green in R’. We let B = B(R) and
B’ = B(R') be the corresponding adjacency matrices. Let ¢ be a green vertex in R
and let f be a frozen vertex in R. Since ¢ is green in R, we have b;y > 0 and also,
since k is green in R, we have byy > 0. Therefore,

bip = big + [bir] s [brsls — [bie] - [brs]—
= bif + [bir]+ [brs]+
= bz’f =0
so that 7 is green in R’. O

Remark 1.17. Note that under the hypothesis of Lemma[[.T6] it may happen that
g([R']) > g([R]) — 1 since a red vertex in R can turn green in R’, see for instance
the penultimate mutation in Figure

Corollary 1.18. Let Q be a cluster quiver. If green(Q) # &, then lmin (Q) = |Qol.

~

Proof. By definition, in a maximal green sequence i = (i1, ...,1;), we have g(1;(Q)) =

A~

0 whereas g(Q) = |Qo|. Therefore, it follows from Lemma [[.T60 that | > |Qo|. O

Example 1.19. (1) Let @ be the quiver 1—2—3. Then i = (123) is a
maximal green sequence and therefore {yin (Q) = 3 = |Qol.
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(2) Let Q' = p2(Q) be the cyclic quiver with three vertices. Then it is easily
verified that £pin (Q') = 4 > 3 so that Corollary [[I8 only provides a lower
bound for £ pp;n -

Note also that these examples show that f£,,;, is not invariant under mutations.
The same will appear to be true for £,ax-

We recall that for a quiver @, an admissible numbering of Qo by sources (resp.
by sinks) is an n-tuple (i1,...,4,) such that Qo = {i1,...,i,} and where i; is a
source (resp. a sink) in @ and such that for any 2 < k < n, the vertex iy, is a source
(resp. a sink) in p;,_, oo i, (Q).

Lemma 1.20. Let QQ be an acyclic quiver. Then any admissible numbering of
Qo by sources is a mazimal green sequence. In particular, green(Q) # & and

min (Q) = |Qol-

Proof. Since @Q is acyclic, it is well-known that there is at least one admissible
numbering of Qo by sources. Let i = (i1,...,4,) be such a numbering. Without
loss of generality, we assume that this admissible numbering is (1,...,n). For any
1 < k < n, we let B®) be the adjacency matrix of R*) = py 0--- 0 u1(Q) and
Q¥ = ppo---o 11(Q). We prove by induction on k that the green vertices in R
are precisely {k + 1,...,n}.
Let 7 # k be non-frozen vertices and f be a frozen vertex. We have
k k—1 k—1 k—1 k—1 k—1
o) = o P b YT — e P Y

Since k is a source in Q%1 it follows that bgykkfl) < 0. Also, by induction hy-

pothesis k is green in R*~1 so that bgf;l) > 0. Therefore, bfkf) = bgykffl) so that a

non-frozen vertex i # k is green (or red, respectively) in R*) if and only if it is green

8, =MD, = bt = 13

that k is red in R®) whereas it was green in R#~1 . Thus, the green vertices in R*)
are exactly {k + 1,...,n}. In particular, (1,...,n) is a maximal green sequence for

Q. O

In general, it is not true that green(Q) # ¢ for an arbitrary quiver ). For
instance, we have the following proposition, which will be proved in Section [Tt

(or red, respectively) in R(*=1Y. Moreover, b

Proposition 1.21. The quiver

A
Q:1=——

has no maximal green sequences.

More generally, a representation-theoretic criterion for the non-existence of max-
imal green sequences is given in Proposition [[.Il This in particular enables us to
show that the McKay quiver

N
<t/

27—=3

considered in [TV10] has no maximal green sequences neither, see Example
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The quiver in Proposition [[.21]is the quiver associated with any triangulation of
the once-punctured torus, see [FST08|. We will see in Section [B.§ another example
of a surface without boundary, namely the sphere with four punctures, for which
there exist maximal green sequences.

1.6. A conjecture on lengths. Given a cluster quiver @Q, the empirical maximal
length is

0 (Q)=max{l =1 | green,(Q) # & for any k s.t. fpmin (Q) <k <1}
and we let
green’(Q) = greenc () (Q),

with the convention that £9  (Q) = 0 if green(Q) = &.
We always have €2 (Q) < lmax(Q) and green®(Q) < green(Q) but based on the
various examples we computed, we conjecture the following.

Conjecture 1.22. Let Q be a cluster quiver. Then lmax(Q) = 0. .(Q) and

green(Q) = green®(Q).
In other words, the set

{l e Zso | green(Q) # &}

18 an interval in 7.

The motivation for introducing the empirical maximal length is that it is easy
to determine in practice: let [ be the smallest integer such that green,(Q) # &
and green;,;(Q) = &, then | = ¢3 (Q). Therefore, if Conjecture holds, it
is enough to find such an [ to determine green(@). This is the strategy we use in
Appendix

Note that Conjecture does not hold true in the non-simply-laced case, as it
appears for instance in Appendices [B.1] or [B.3l

2. MAXIMAL GREEN SEQUENCES AND BPS QUIVERS

As we already mentioned, maximal green sequences appear independently in
theoretical physics, implicitly in [GMNQO9] or more explicitly in [ACCT 11} [CCVTI].
In order to make the connection clear, we present in this short section a precise
dictionary between the formal definition we gave in the previous section, and the
definition given in [CCV11] §4.2].

We fix a cluster quiver ). Vertices in @) are called nodes in [CCV11].

For simplicity, we identify the set Qo of vertices with {1,...,n}. Welet {vi}, .,
denote the canonical basis of Z". In the terminology of [CCV11], for any R €
Mut(Q) and for any 1 < i < n, the ith c-vector c;(R) € Z™ is called the charge at
node i. Therefore, the charges in @ are Yi, ..., Yn-

For any quiver R € Mut(@) and for any 1 < k < n, the charge at node k in R
is cx(R) = X1, ck;i(R)y; where ¢gyi(R) € Z for any i. It follows from the sign-
coherence for c-vectors (see Theorem [L6) that either cg.;(R) < 0 for every i, in
which case k is green in R, or cg,;(R) = 0 for every ¢, in which case k is red in
R. Moreover, if k is green in R, then the c-vectors of pj(R) are precisely given in
terms of those of R by the rule for charges given in [CCVI1I1] (4.4)].

Now, the sequences of mutations considered in [CCVT1I] for capturing complete
spectra of BPS particles are those for which:

(G1) the initial quiver appears with node charges 7;;

(G2) the final quiver appears with node charges —~;;

(G3) At each step we may mutate on any node whose charge can be expressed
as y = >, ¢;y; where ¢; > 0 for any 1 <i < n.
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Therefore, with our terminology, (G1) implies that the initial quiver R has only
green vertices, so that [R] = [Q] according to Proposition [[ 10, (G2) implies that
the final quiver R’ has only red vertices so that [R] = [@] according to Proposition

[LI0 Finally, (G3) says that at each step in the mutation sequence @ ~ R

RW K, Ea RO A @, we mutated at a green vertex. Therefore, the sequences
considered in [CCV11] are precisely the maximal green sequences of Q.

3. THE FINITE CLUSTER TYPE

It was proved in [FZ03] that a cluster algebra A associated with a cluster quiver
(@ has finitely many cluster variables if and only if @ is mutation-equivalent to a
Dynkin quiver A. In this case, ) is called of finite cluster type and it is known
that the number of cluster variables in Ag equals the number of almost positive
roots of the Dynkin quiver A, where the set ®=_; (&) of almost positive roots of
A is the disjoint union of the set <I)+(Z) of positive roots with the set of negative
simple roots.

Theorem 3.1. Let Q be a quiver of finite cluster type. Then

|Qo| < |green(Q)| < co.

Proof. Since @ is of finite cluster type, the exchange graph EG(Q) is finite. More-
over, we know from Proposition [[LT4] that ﬁ(@) is acyclic. Hence, it contains
only finitely many oriented paths and thus it follows from Proposition [[.I3] that
green(Q) is finite.

Now since ﬁ(@) is a finite acyclic oriented graph, it necessarily has at least
one sink and one source and by Corollary [[LT2] it has a unique sink, corresponding
to [@], and a unique source, corresponding to [CVQ] The underlying graph of m(@)
is |Qo|-regular so that there are exactly |Qo| distinct arrows starting at [@] Since
ﬁ(@) is finite, each of these arrows gives rise to at least one oriented path from
the unique sink to the unique source and therefore we obtain at least |Qo| distinct
oriented paths from the unique source to the unique sink in E.C:(Q), that is, |Qo| <

jareen(Q)]. 0
Remark 3.2. (1) If @ is a cluster quiver such that |Qg| = 1, then clearly
jgreen(Q)| = 1.

(2) If Q is a (connected) cluster quiver such that |Qo| = 2, then it is shown in
Lemma 4Tl that green(Q) has two elements of respective lengths 2 and 3 in
the finite cluster type and a unique element, necessarily of length two, in
the other cases.

(3) If @ is a cluster quiver of finite cluster type such that |Qo| > 2, then it will
appear in the examples that |green(Q)| > |Qo| in general and, as it is seen
for instance in the Appendix [B.2 for linearly oriented quivers Q,, of type
A,,, the cardinality |green(Q, )| grows exponentially as a function of n.

Remark 3.3. If ) is of finite cluster type, then a rough analysis provides an upper
bound for £,.x(Q). Namely, if we set

Q) = |{[R] | ReMu(@) ]

)

then we have

fmae(Q) < |Qol - (|Qol = DXP72.
Indeed, an oriented path on EG(Q) starts at [Q] where we haveﬁd choices of
directions and then, it passes at most once through any vertex in EG(Q) distinct

~

from [@] and [Q]. There are x(Q) — 2 such vertices and at each such vertex [R],
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there are at most |Qo| — 1 possible directions (since in order to leave [R], we cannot
use backwards the arrow we just used in order to arrive at [R]).

In general, these upper and lower bounds are not optimal but in the acyclic
case, we can sharpen the result with the following theorem whose proof is given in
Section [&F

Theorem 3.4. Let Q be a Dynkin quiver. Then:

(1) Lmin (Q) = |Qol,
(2) fmax(Q) = [24(Q)],

where @ (Q) is the set of positive roots of Q.

Example 3.5. We show below the oriented exchange graphs for the quivers in
the mutation class of type A3 (up to isomorphisms and opposition). The labels on
the faces correspond to denominators of the cluster variables in the corresponding
clusters expressed in the seed with exchange matrix B(Q). The unique source is
circled in green and the unique sink is circled in red.

aq

—a3

F1GURE 3. The oriented exchange graph of 1— 2— 3.

a1 + Qa3

—Qg

FIGURE 4. The oriented exchange graph of the cyclic quiver with 3 vertices.
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-

—a3

FI1GURE 5. The oriented exchange graph of 1«—2— 3.

We refer to Appendices [B.2] and [B.3] for additional examples.

4. THE INFINITE CLUSTER TYPE

If @ is not of finite cluster type, then ﬁ(@) is an infinite oriented graph and
it is not known whether green(Q) is a finite set or not. Moreover, we have already
seen in Proposition [[2]] that green(Q) can be empty in the general case. When Q
is acyclic, we know from Corollary [ T8 that green(Q) is non-empty so that we will
now focus on this case.

It is proved in [FZ03] that an acyclic quiver is of finite cluster type if and only
if it is an orientation of a Dynkin diagram or, in representation-theoretic terms, if
it is of finite representation type. Representation-infinite quivers are partitioned
into two sets: affine quivers, which are acyclic orientations of extended Dynkin
diagrams of types g, Dor E , and wild quivers, which are the acyclic quivers which
are neither Dynkin nor affine.

The following lemma will be proved in Section

Lemma 4.1. Let Q be a (connected) cluster quiver with two vertices. Then:

(1) either Q is of type Az and green(Q) = 2, lnin (Q) = 2 and lyax(Q) = 3,
(2) or Q is representation-infinite and green(Q) = 1 and lmin (Q) = lmax(Q) =
2.

4.1. The affine case. In the affine case, our main theorem is:
Theorem 4.2. Let Q be an affine quiver. Then green(Q) is finite and non-empty.
Example 4.3. Consider the quiver

2

7N

Q: 1——3

of affine type /~1211. Then locally around [@], the oriented exchange graph m)(Q)
can be depicted as follows where the unique source is circled in green and the unique
sink is circled in red. Here the faces are labelled by the denominator vectors of the
cluster variables in the corresponding clusters, when expressed in the initial seed
corresponding to [@]
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Q2

We see that, in this case, there are exactly five maximal green sequences.
Now, if we consider its mutation Q' = p2(Q) given by

2
/N
Q: 1—=3,

then locally around [@\’], the oriented exchange graph ﬁ(Q’ ) looks as follows.

201 + ao + a3

a1 + Qo + Q3
Note that in this case, there are also five maximal green sequences.
For additional examples, we refer the reader to Appendix [B.5l

4.2. Wild quivers with three vertices. For the wild case, the situation appears
to be more complicated. It is in fact known that for any (connected) wild quiver @
with at least three vertices, there exist regular tilting k@-modules [Rin88|. There-
fore, the proof of Theorem cannot be reproduced for wild quivers. However,
we will prove in Proposition that for quivers with three vertices, regular tilting
k@-modules do not appear along maximal green sequences so that we are still able
to deduce the finiteness of green(Q) in this case.

Theorem 4.4. Let Q be an acyclic quiver with three vertices. Then green(Q) is
finite and non-empty.

The proof is given in Section

If Q is a wild quiver with at least four vertices, we do not know whether green(Q)
is finite or not. In this case, we can only provide a few examples which yield some
evidence for the finiteness of this number.

If Conjecture holds, in order to prove that green(Q) is a finite set for a
given quiver @, it would be enough to find the smallest I > 1 such that green;(Q) #
@ and such that green; ;(Q) = ¢J; in this case green(Q)) = greeng(Q). We
now provide examples of wild quivers for which we found such integers. These
were computed with the computer program QUIVER MUTATION EXPLORER [DP12]
whose algorithm will be outlined in Appendix [Al
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Example 4.5. Consider the quiver
Q:1=2—=3=x4.

Then
l | |green; (Q)]
1
7
6
7
8 0

Therefore, lmin (Q) = 4, £2,..(Q) = 7 and |green’(Q)| = 21.

max

~ || O >

Example 4.6. Consider the quiver

Q:1=2-=3=4.

Then
L | [green;(Q)|
4 1
5 4
6 0

Therefore, lmin (Q) = 4, £9..(Q) = 5 and |green’(Q)| = 5.

max

5. SILTING, TILTING, CLUSTER-TILTING AND t-STRUCTURES

As it was already mentioned, given a cluster quiver @, the oriented exchange
graph ﬁ(@) we are studying in this article is an orientation of the cluster ex-
change graph EG(Q) of the cluster algebra Ag, which is the dual graph of the
cluster complex A(Ag) introduced in [EZ03]. The same exchange graph also arises
naturally in representation theory. This was first observed in [BMR.06} [CCS06]
where it was proved that if @) is an acyclic quiver, then the clusters in Ag cor-
respond bijectively to the cluster-tilting objects in the so-called cluster category
Cqg of @ in such a way that cluster mutations correspond to mutations of cluster-
tilting objects in Cq. This generalises to arbitrary skew-symmetric cluster algebras
by considering the cluster-tilting theory of certain generalised cluster categories,
see [Ami09, [Plalla]. The aim of this section is to recall how EG(Q) and EG(Q)
arise in the context of additive categorifications and related topics in representation
theory.

In the particular case where @ is acyclic, identifying mod k@ with a subcategory
of the cluster category Cq, the tilting k@Q)-modules become cluster-tilting objects in
Co and therefore, the cluster complex A(Ag) contains a certain subcomplex whose
maximal simplices correspond to the tilting k@-modules. Already in 1987 Ringel
observed that the set T4 of tilting modules over a finite dimensional algebra A
carries the structure of a simplicial complex. The study of this complex and of a
poset structure on T4 was initiated in [RS91] and further carried out by Happel
and Unger [Ung964, [Ung96b, [HUO5|. We refer to the contributions of Ringel and
of Unger in the Handbook of tilting theory for further details [Rin07), [Ung07].

In the first part of this section we recall the related notions for tilting modules,
and describe then some generalisation to the setup of derived categories. We finally
explain the link to cluster categories.

Throughout, we fix an algebraically closed field k and all the algebras we consider
are k-algebras. If there is no risk of confusion, for a finite-dimensional algebra A,
we denote by D = D?(mod A) its bounded derived category with shift functor [1].
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5.1. Tilting modules and their mutations. Let A be a basic connected finite-
dimensional k-algebra with n non-isomorphic simple modules.

Definition 5.1 (Tilting modules). A finitely generated A-module T is called tilting
if

(1) pdimT < 1,

(2) Exty,(T,T) =0 for all i > 0,

(3) A admits a coresolution in mod A by A-modules in add 7.

A poset structure on the set T4 of isomorphism classes of basic tilting modules
is defined in [RS91] by setting

T<T < T+-cT*

where
T+ = {X emod A | Ext/(T, X) = 0 for all i > 0}.

We denote by Kmod 4 the Hasse graph of this poset of tilting A-modules. It is shown
in [HUOQS] that the unoriented graph underlying this Hasse graph is the dual graph
of the complex of tilting A-modules: there is an arrow T'— T” in Kmod A precisely
when T'= @, T and T" = wi (T) = (T/Ty) ® T}, where T}, is the forward mutation
of T at some ¢ defined as the cokernel of a minimal left add (T'/T})-approximation
Ty — M (we usually slightly abuse notations and write T'/T}, for (B, T})-

The poset T4 has A as unique maximal element, and in case the algebra A is
Gorenstein, it has DA as unique minimal element.

5.2. Silting objects and their mutations. The Hasse graph of the poset of
tilting A-modules is not n-regular since not all tilting modules admit mutations.
There is a number of ways to fix this problem: Iyama and Reiten propose to
study support 7-tilting modules (since every sincere almost tilting module has a
completion) [IR12], and there are various ways to extend the notion of tilting module
to a larger class of objects where mutations are always possible. We refer to [KY12]
for a more complete picture on those various concepts, and we just recall the concept
of silting objects here:
Let D denote the bounded derived category of mod A with shift functor [1].

Definition 5.2 (Silting objects, [KV88|). An object T in D is called silting if:
(1) Homp(T,T[i]) = 0 for any i > 0,
(2) thick(T) =D

where thick (T') denotes the thick subcategory generated by T in D.

It is shown in [ATL0] that the set Tp of isomorphism classes of basic silting objects
is turned into a poset by setting

T<T «THcT,
where as for modules
T+ = {X € D | Homp(T, X[i]) = 0 for all i > 0}.

Aihara and Iyama also show in [AI10] that the unoriented graph underlying the
Hasse graph K p of Tp is the dual graph of the complex of silting objects in D: there
is an arrow T — T” in K p precisely when T’ = @, Tjand T’ = wi (T) = (T/Ty,)®T},
where T}, is the forward mutation of T at some k defined as

T, = Cone (T}, — @ Irr (Ty, T5)* ® Tj).
£k

A tilting object in D is a silting object T such that Homp (T, T[i]) = 0 for any
i # 0. In particular, any tilting A-module T viewed as a stalk complex in D is
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a tilting object in D, and therefore a silting object in D. It follows immediately
from the definition that if 7 and 7" are tilting A-modules such that 77 = yu; (T') as
A-modules, then 7" = u;f (T') as silting objects in D.

5.3. t-structures and their mutations. Let T be a silting object in D and con-
sider the full subcategories in D:

D5 = {N € D | Homp(T, N[i]) = 0 for all i > 0}
DZ" = {N € D | Homp(T, N[i]) = 0 for all i < 0}.
Then (D5°,DZ°) is a bounded t-structure on D with length heart Hr, see for

instance [KY12]. The simple forward mutation (also called forward tilt) of a heart of
a bounded ¢-structure in D defined in [HRS96] corresponds to the forward mutation

of the respective silting object in D, see [AT10, [KYT12].

>
3
X

N

=0
DT

T T“[l]

FIGURE 6. The bounded t-structure on D associated with a silting object.

Also from these papers, we summarise the situation as follows: isomorphism
classes of basic silting objects in D correspond bijectively to bounded t-structures
with length heart in D. The t-structures are ordered by inclusion of their left aisles,
and the forward mutation describes the arrows in the Hasse graph of these posets,
see Figure [1

Since there is always an infinite number of silting objects in the derived cate-
gory, we restrict our study to an interval with maximal element A and minimal
element A[1], thus slightly larger than the poset of tilting A-modules. We denote
by E.C:D(A,A[l]) the Hasse graph of the interval formed by the silting objects
which are between A and A[1] for this partial order. This interval, which was al-
ready considered in appears to be relevant for the purpose of maximal green

sequences, dilogarithm identities or for BPS quivers theory [Kell1b, [CCV11l[BD12].

5.4. Cluster-tilting objects and their mutations.

Definition 5.3 (Cluster-tilting objects). A cluster-tilting object T in a triangulated
category C is an object T such that for any X in C, we have

Exts(T,X) =0« X €addT.

Cluster-tilting objects were first considered in where it was proved
that the combinatorics of cluster-tilting objects in cluster categories were governed
by mutations in (simply-laced) acyclic cluster algebras.

Given an acyclic quiver @, its path algebra k(@ is a finite-dimensional hereditary
algebra. We denote by I' the Ginzburg dg-algebra associated with the quiver with
potential (@, 0). It is a 3-Calabi-Yau dg-algebra concentrated in negative degrees,
see |Kellla]. We denote by DI the derived category of dg-I'-modules, by perT’
its perfect subcategory and by DgyI' the full subcategory of DI' formed by those
dg-modules with finite-dimensional total homology. The cluster category of @ is
defined in [Ami09] as the triangulated quotient Cq = perI'/Dgal. It is a Hom-finite
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N

N

<0 >0
D50 [l|| Hr { Dz
T T[1]
ut
<0 \ >0
DM+ T Hl"+ T f DHJr T
ptT prT]

FIGURE 7. Forward mutation of a silting object in D and the in-
clusion of the corresponding left aisles.

triangulated 2-CY category which is naturally triangle-equivalent to the cluster
category defined as an orbit category in .

Then EG(Q) = ﬁDkQ (kQ,kQ[1]) is an orientation of the graph of mutations
of the cluster-tilting objects in Cq and the unique source corresponds to the image
of I' under the canonical morphism per I'— Cg, see [KN10] and also [KY12,
Qiur2].

For a general cluster quiver () and a non-degenerate potential W on @, it is still
possible to form the triangulated quotient Cg w = perI'g w /Dl g,w where I'g w
is the Ginzburg dg-algebra associated with the quiver with potential (Q, W). Then
E.C:(Q) is an orientation of the connected component of the graph of mutations
of cluster-tilting objects in Cqgw which contains the image of I'gw under the
canonical morphism per I'g w— Co.w.

If ¥ denotes the suspension functor in D', a maximal green sequence for Q)
corresponds in this context to a sequence of forward mutations from the canonical
heart H of Dl'g w to its shift XH, see [Kelllb).

5.5. Patterns. Let @ be a cluster quiver with n vertices and let T,, denote the n-
regular tree so that the edges adjacent to any vertex in T,, are labelled by {1,...,n}.
Let to be a vertex in that graph. To any vertex ¢ in T,, we can associate an ice quiver
Q(t) such that Q(to) = @ and such that ¢ and ¢’ are joined by an edge labelled by
k in T, if and only if Q(¢') = ux(Q(t)). This endows T,, with a structure of an

oriented graph T, by orienting the edge ¢ —* ¥ towards ¢’ if and only if k is
green in Q(t).

Let W be a non-degenerate potential on @ and I" be the corresponding Ginzburg
dg-algebra. The category D' (with suspension functor X)) is endowed with a
natural ¢-structure with length heart . As explained in [Kell2|, we can associate
to any vertex ¢ in T,, a heart H(t) in DI such that H(tg) = H and such that there

is an arrow t —->¢ in T, if and only if H(t') is obtained from H(t) by a forward
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mutation at the simple Si(t) in H(t), see also [KQ12, [KY12]. This is called the
pattern of hearts in Dggl'. Then a maximal green sequence (i1, ...,%,) corresponds

i1 2 in

to a path tg t t, in T, such that H(t,) ~ LH(t) and
H(tr) # ZH(t) for any k < n.

If Q is acyclic, H = kQ and D = D®(mod H) has shift functor [1], we can also
associate to any vertex ¢ in T, a silting object T'(¢) in D such that T'(tg) = k@ and

such that there is an arrow t —>> ¢ in T, if and only if T(t') is obtained from
T(t) by a forward mutation at T,gt). This is called the silting pattern on D. Then
it follows from [KQI2] that a maximal green sequence (iy,...,i,) corresponds to

tn in T, such that T(t,) ~ H[1] and T(t},) %

1 12 in

a path g t1
HJ[1] for any k < n.

6. MORE ON HAPPEL-UNGER’S POSET

We assume in this section that @ is a cluster quiver which admits a non-
degenerate potential W which is Jacobi-finite, that is, the Jacobian algebra A =
J(Q,W) is finite-dimensional. These conditions are clearly satisfied when @Q is
acyclic (with zero potential so that J(Q,0) = k@) or when (Q, W) is given by an
unpunctured surface, see [ABCP10l [Lab09].

The Jacobian algebra A is Gorenstein [KR07], thus we know from Section [fl that
the oriented exchange graph Kmod 4 of tilting modules has A as unique maximal
element and DA as unique minimal element. We note that Emod 4 18 in general not
connected, even in cases where the exchange graph of silting objects is connected:
Happel and Unger have shown that for an affine acyclic quiver @, the graph Kmod A
is connected precisely when @ is not of type ELS with s > 1, or g272 with alternating
orientation [HUOQ5].

Theorem 6.1. Let QQ be an acyclic quiver and H = kQ. Then KmodH is a full
convez oriented subgraph of EG(Q).

Proof. Let T and T’ be two tilting H-modules and consider a path
T—7O_ 7O

in EG(Q). Then we have the following chain of inclusions of the left aisles of the
corresponding t-structures in D = D(mod H):

D%O c D;Ol) c..-C D;Ol) c D%,O.
If there is some 1 < k < [ such that 7) is not a tilting H-module, then it is a
silting object in EGp(H, H[1]) and therefore, it has a summand of the form P;[1].

Thus we have P;[1] € D;?k) and we get P;[1] € D5 which implies

0 = Homp(P,[1], T'[1]) = Homp(P;, T") = Homp (P;, T")

so that T" is not sincere, which is a contradiction since every tilting H-module is
sincere. Therefore, for any 1 < k < [, the silting object T® is a tilting H-module.
And as it was already mentioned, the forward mutation of a tilting module T in
mod H coincides with the forward mutation of T viewed as a silting object in D.
Therefore, Kmod g is a full convex oriented subgraph of E—G)(Q) O

Example 6.2. Figures[ and [@show how the Happel-Unger’s poset embeds in the
oriented exchange graph of type As. In both cases, the unique source is circled in
green and the unique sink is circled in red.
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P @I
Pal1] @ Iz
P @ P (&

Pi[1] @ P2[1]

P[1] ® P2

FIGURE 8. The oriented exchange graph of 1— 2.

FiGURE 9. Happel-Unger’s poset, sitting in the oriented exchange
graph of 1— 2.

Example 6.3. Figures 10, 1 2], 03014 and show how the Happel-Unger’s
posets embed in the oriented exchange graphs of type Asz. In any case, the sources
are circled in green and the sinks are circled in red.

FIGURE 10. The oriented exchange graph of the quiver
1— 2— 3, labelled with denominator vectors.
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FiGURE 11. Happel-Unger’s poset for the quiver 1— 2— 3, sit-
ting in the poset of maximal green sequences.

FIGURE 12. The oriented exchange graph of 1«—2— 3, labelled
with denominator vectors.
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FI1GURE 13. Happel-Unger’s poset, sitting in the oriented exchange
graph of 1«—2— 3.
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(@)

J

a1 + Q3

—0

FI1GURE 14. The oriented exchange graph of the cyclic quiver with
3 vertices, labelled with denominator vectors.

a1 + Q3 e | Sel
v A v
e ! RN
P ! RN
L7 a1 + oo N Qg + a3 o
v v < v
,*J\ 041 /\,,*,,J\ a2 /\,,*,,J\ a3 /L*,
\'\ /'/ \'\ /‘/ \'\ /‘/
[ N —Q3 ? —Q ]
S ! P
T A I 4
—ao O

FIGURE 15. Happel-Unger’s poset for the non-hereditary cluster-
tilted algebra of type As, sitting in the corresponding oriented
exchange graph.

Remark 6.4. Example [6.3] shows a phenomenon which was already observed in
[HUO05], namely that the Happel-Unger’s poset is not stable under derived equiva-
lences. It also shows that the oriented exchange graph is not stable under derived
equivalences neither. Indeed, in the linear case (Figure [[I]) there are 9 maximal
green sequences whereas there are 10 in the alternating case (Figure [2).

Lemma 6.5. Let Q be an acyclic quiver and H = kQ. Let (i1,...,i,) be an
admissible numbering of Qo by sinks. Assume that there is a path from H to DH
mn KmodH and let (v1,...,v;) be the corresponding green sequence for Q. Then
(Vi,..., 00,01, ..., 4n) € green; , (Q).

Proof. Since DH is a tilting H-module, it is in particular a tilting object in D(mod H)
and therefore a silting object in D = D*(mod H). Let (iy,...,i,) be an admissible
numbering of Qg by sinks. The endomorphism algebra of DH has Gabriel quiver
Q°P and (i1,...,4,) is an admissible sequence of sources for Q°P. Therefore, con-
sidering successive APR-tilts at sources (see [APRTY]), we obtain a sequence of
tilting objects in D:

pH Ya, p) Hiz Hina T(n=1) Hin, H[1]
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7" — (@ Ii]) ® (@Tllz’j> = (@ Iil> ® (@Pﬂ m)
<k i<k J<k 1=k

for any 1 < k < n. In particular, we have proper inclusions of left aisles

<0 <0 <0 . <0 <0
Doy < Dray € Drpy < C Doy © DH[l]

where

so that we obtain a path of length n from DH to H[1] in EG(Q). By Theorem [6.T]
a path of length [ from H to DH in KmodH gives rise to a path of length [ from
H to DH in E—G)(Q), composing this path with the above path from DH to H[1]
gives a path from H to H[1] of length n + [ in E.C:(Q), and therefore an element
in green;_,, (Q). Figure [I@ illustrates the proof.

mod H[—1] mod H mod H[1]

FiGURE 16. Extending a path from H to DH to a maximal green sequence.

O

The statement of Lemma [6.5] fails if @ is not acyclic: from Figure [[Hlin Example
[6.3] we see that in case @ is the 3-cycle with non-degenerate potential that 3-cycle,
the Jacobian algebra A is self-injective and so the poset Kmod A consists only of one
point. The minimal length of a maximal green sequence is 4, thus the statement of
lemma does not hold.

Remark 6.6. Lemma provides a criterion for the non-existence of paths from
H to DH in Kmod g. For instance, consider the quivers

@Q1:1>2—->3=4 and Q2:1=x2—>3=4.

Since k@)1 and k@), are wild hereditary algebras, they have no projective-injective
modules. Therefore, for any ¢ = 1,2, a path from k@, to DkQ@; in Kmod kQi
must have a length at least 4. However, as we saw in Examples and (1.6 we
have 0. (Q1) = 7 and 9, (Q2) = 5. Therefore, if Conjecture holds, then

green; (@Q1) and green;(Q2) would be empty for [ > 8 and there would be no paths
from k@; to DkQ); in Zmod kQ; -

7. PROOFs OF SECTION [II
7.1. Proof of Proposition [[.TOl

Proof. Let W be a generic potential on ) and let I' be the Ginzburg dg-algebra
associated to the quiver with potential (@, W). The category DggI" is endowed with
a natural t-structure and we denote by H the corresponding heart with simples
Si, i € Qo. Let T|g,| denote the |Qo|-regular tree and consider the pattern of tilts
t — H(t) with H(To) = H, see Section E.5 or [Kell2, §7.7].
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Since R € Mut(@), there is some vertex ¢ in T|q,| such that R = Q(t) and since
all the non-frozen vertices in R are green, it means that all the simples in H(t) are
in H. Therefore, there exists a permutation ™ € &g, such that S;(t) ~ Sy(; for
any i € Qo and it follows from [Kell2, Corollary 7.11] that 7 induces the wanted
isomorphism of ice quivers.

Similarly, if all the non-frozen vertices in R = Q(t) are red, it means that all the
simples in H(t) are in K. Therefore, there exists a permutation 7 € Sg, such
that S;(t) ~ XS ;) for any i € Qo and it follows from [Kel12, Corollary 7.11] that
7 induces the wanted isomorphism of ice quivers. (Il

7.2. Proof of Proposition [1.271

Proof. We know from Plamondon’s thesis [Plallb, Example 4.3] that there exists
a (Jacobi-finite) non-degenerate potential W on @ such that there is no sequence
of mutations in the cluster category Co w joining the cluster-tilting object I'g w to
the cluster-tilting object ¥I'g w. Therefore, I'g w and ¥I'g w are in two different
connected components of the mutation graph of cluster-tilting objects in Cq w. In
particular, if H denotes the canonical heart in Dgl'g w, there is no sequence of

~

forward mutations from 7 to S and therefore, there is no path from [Q] to [Q]
in ﬁ(@) Hence, green(Q) = &. O

7.3. On Jacobi-infinite quivers with potential. In this short section we give a
criterion for the non-existence of maximal green sequences. We recall that a quiver
with potential is called Jacobi-infinite if the corresponding (completed) Jacobian
algebra is infinite dimensional over k.

Proposition 7.1. Let (Q,W) be a Jacobi-infinite quiver with potential. Assume
that it is non-degenerate. Then green(Q) = .

Proof. Let T be the Ginzburg dg-algebra corresponding to (Q,W). Let H denote
the canonical heart in DgI. We claim that 3 is not reachable from H by iterated
forward mutations of hearts in DgI'. Indeed, if so, we would obtain a sequence of
mutations from I to XTI in the generalised cluster category C associated to (Q, W),
see [Kell2 [Plalla]. Therefore, T" and XI' are in the same connected component
of the cluster-tilting graph of C. Fix thus a sequence i = (i1,...,%;) such that
I’ = p;i(XT). Then it follows from [Plallal, that this gives a sequence of mutations of
decorated representation in the sense of [DWZ10] from the decorated representation
of (Q,W) corresponding to Hom¢ (I, XI') = 0 to the decorated representation of
1i(Q, W) of Home(T',T') ~ Ende(T) ~ J(Q, W) which is infinite dimensional by
hypothesis. However, mutations of finite-dimensional decorated representations of
quivers with potential are finite-dimensional, a contradiction. Thus, there is no
sequence of forward mutations from H to ¥H and therefore, there is no path from

[Q] to [Q] in EG(Q). Hence, green(Q) = &. O

Example 7.2. Consider the McKay quiver

A
Nt/
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Then the main theorem of [TV10] asserts that Q admits a non-degenerate potential
such that the corresponding Jacobian algebra is infinite dimensional. Therefore, it
follows from Proposition [Z.I] that @) has no maximal green sequences.

8. PROOFS OF SECTION [3]
8.1. Proof of Theorem [3.41

Proof. A Dynkin quiver is acyclic so that the first point follows from Lemma
For the second point, consider the Weyl group W associated to ) with simple
reflections s;, with i € Qp. Let wy be the longest element in W and fix a reduced
expression wg = $;, -+ 8;,. so that r = |®,(Q)|. Then it is well-known that i =
(i1,...,1,) is an admissible sequence of sinks in (). For any 1 < k < r, we set

with the convention that 7(©) = H.
Since i is an admissible sequence of sinks, for any 1 < k < r, the vertex iy is

a sink in the quiver of the endomorphism ring of T7*~1 so that T is obtained

from T*~1) by a simple APR-tilt (see [APR79]). Therefore, the left aisles D;Ok,l)
)

and D;Ok) differ by a single indecomposable object, namely Ti(kk_1 . Moreover, it
is well-known that 7" ~ H[1]. Therefore, we obtained a sequence of forward
mutations
+ + +
gl e Bey e p) L)
which is the longest possible. Thus i is a maximal green sequence of the longest
possible length and we have £, (Q) = r = |24 (Q)]. O

9. PROOFS OF SECTION [l
9.1. Proof of Lemma [4.11

Proof. The first point follows from Theorem 3.4l We now prove the second point.
Let (i1,42) be an admissible numbering of Qo by sources. Then it was proved in
Lemma [[.220 that (i1,42) is a maximal green sequence for Q. If there exists another
maximal green sequence, then it is necessarily obtained by iterated mutations at
sinks of the form isiq1igiy ---. Let H = k@), 7O = H and for any k > 1, let

p _ [ Hn (@YD) if ks odd,
L p (TR if ks even.

Then, as in the proof of Theorem [3.4] the left aisles D;Ok,l) and D;Ok) differ by a

single indecomposable object, namely ﬂ(kkfl). However, the left aisle Df{%] contains

infinitely many more objects than the left aisle DEO so that 7" » H [1] for any
k = 1. Therefore, there is no maximal green sequence beginning with io and thus

green(Q) = {(i1,i2)}. O

9.2. Proof of Theorem Let @ be an affine quiver and let H = k@Q. The aim
of this subsection is to prove that green(Q) is a finite set. Before we can prove this
we will need some technical results.

We let S1,...,.S, denote the simple H-modules and for any 1 < ¢ < n, we denote
by P; the projective cover of S; and by I; its injective hull.

As usual, we let D be the bounded derived category of mod H with shift functor
[1]. We denote by I'(D) the Auslander-Reiten quiver of D, by P the preprojective
component of I'(D), that is, the connected component containing the projective
H-modules and by Z the preinjective component, that is, the connected component
of I'(D) containing the injective H-modules.
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We start with a general lemma:

Lemma 9.1. Let H be a representation-infinite connected hereditary algebra. Then
there exists N = 0 such that for any k = N, for any projective H-module P and
for any injective H-module I, the H-modules 7=*P and 7" are sincere.

Proof. For any 1 < i < n, it is known that the sets {T*kPZ-}]pO and {Tkli}k>0
contain only finitely many non-sincere modules, see [ASS05, Ch. IX, Proposition

5.6]. Therefore, there exists N; = 0 such that 775 P; and 7FI; are sincere for any
k = N;. Then N = max{N; | 1 <i < n} is as wanted. O

Proposition 9.2. Assume that H is tame. Let T be a tilting object with its inde-
composable summands in P and let and T’ be a tilting object with its indecomposable
summands in L. Then the number of oriented paths from T to T' in KD is finite.

Proof. We can write

T=@@7Pjand T = P 7"
j=1 i=1
with k;,1; € Z for any 1 <i,j <n.

Fix an oriented path 7 = TO—7®_— ..., 7@e-D_,7® = 7' in Kp
and let 70" be the first silting object in that path with a direct summand in
the component Z. We denote by 7%%!I; with [ > 0 this indecomposable direct
summand. Since H is tame, any tilting object in D has at most n—2 indecomposable
regular modules as direct summands, see |[Rin84]. The same holds for any silting
object S such that 7'< S < T”. Thus, 70" has at least one direct summand in P,
which we denote by ka*kPj with k£ > 0.

We have

Ethp (Tli+lli, Tkj*kPj) ~ DHomp (Tkj*kPj, Tli+l+1li)
~ DHomD(Pj, Tlifkj+l+k+1li)’

and this is non-zero for k+1 > N + k; —[; — 1 according to Lemma [@.J] Therefore,
there exists K > 0 and L > 0 such that any tilting object on an oriented path
from T to T” in Kp has its indecomposable summands in P of the form ka—kPj
for some 1 < j < nand 0 < k < K and its indecomposable summands in Z of the
form 74+ T; for some 1 <i<mnand 0<I<L.

Then, if 7 J"*k,Pj/ is another indecomposable summand of a silting object on an
oriented path from T to T’ in KD, we have k¥’ > 0 and

Exth (% = Py, 7%=k P;) ~ DHomp (P;, 7% ki k= p}),

which is non-zero for k' = N + k + k;js — k; according to Lemma[@.Jl Therefore, the
number of isomorphism classes of indecomposable summands in P of silting objects
arising on an oriented path from T to T’ in KD is finite.

Dually, the number of isomorphism classes of indecomposable summands in Z of
tilting objects arising on an oriented path from 7" to T” in Kp is finite.

Since there are only finitely many rigid regular H-modules, the number of iso-
morphism classes of regular indecomposable summands of tilting object arising on
an oriented path from T to T’ in Kp is also finite. Therefore, the number of iso-
morphism classes of silting objects arising on an oriented path from T to T in Kp
is finite, proving the theorem. Figure [[7 sums up the situation.

O

We can now prove Theorem
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A T A ] e

H HI[1]

FIGURE 17. The Auslander-Reiten quiver of D’(mod H) for a
tame hereditary algebra. Shaded areas correspond to where silting
objects located on a path from H to H[1] can have their indecom-
posable summands.

Proof of Theorem [{.3: Let @ be an affine quiver and H = k(). Then a maximal
green sequence for @ is an oriented path from H to H[1] in Kop. Since H has its
indecomposable summands in P and H[1] has its indecomposable summands in Z,
the result is a direct consequence of Proposition [3.2] Il

9.3. Proof of Theorem [4.4. In this section, we want to prove that green(Q) is a
finite set for an acyclic quiver with 3 vertices.
We first show the following proposition.

Proposition 9.3. Let Q) be a connected wild quiver with three vertices and H = kQ.
Assume that T is a silting object arising on a path from H to H[1] in EG(Q). Then
T is not a reqular tilting H-module.

Proof. Consider a path from H to H[1l] in E—G)(Q) containing a regular tilting
H-module and let R’ be the first regular tilting H-module arising on this path.
Therefore, this path contains an arrow R 2% R’ where R’ = R/R, ® R* with R,
is preprojective, say R, ~ 7 °P;, and R*, R/R, are regular.
Since R is tilting, we get
0 = Extp(R/Ry, Ry)

~ DHomp(R,,7(R/R,))

~ DHomp (7 °P;, 7(R/Ry))

~ DHomp(P;, 7T (R/R,))

~ DHompy (Pj, 7***(R/R,)).

Therefore, 7T (R/R,) is an A/(ej)-module which is rigid (since 7T (R/R,) is rigid
as an A-module) and, since it has |Qq| — 1 indecomposable summands, it is tilting
as a A/(ej)-module and thus, 75t R’ = 7T1(R/R,) ® 75! R} is a regular tilting
H-module satisfying the hypothesis of [Ung96al Theorem 4.3]. Hence, any tilting
module in the same connected component of Kmod g as TT1R’ contains at least
two 7-sincere indecomposable summands. These indecomposables are in particular
regular H-modules. Therefore, the connected component of Kmod g containing
75T1R" does not contain any preprojective, nor preinjective module.

Now if there is a path R'—> - - - — H[1] in EG(Q), since none of the modules in
that path have a projective direct summand, we get a path 7TR'— - — 7H[1] ~
DH in EG(Q) and, by convexity of K moq & inside EG(Q) (Theorem[B.1]), we obtain
a path TR'— .-+ — DH in K 04 g, a contradiction. O
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We can now prove Theorem [£.41

Proof of Theorem[{.J) Without loss of generality we can restrict to the case where
Q is connected. If it is Dynkin or affine, the result is known, see Theorems B.1] and
We can thus restrict to the case where (Q is wild. We let H = k(. The number
of maximal green sequences for ) equals the number of paths from H to H[1] in
EG(Q).

Consider such a path and let T" be the last silting object along this path which is
without summand of the form 7'I; for [ > —1 and i € Qo. The next silting object
in the path is thus px(T) = T/T), ® Tj¥ with T} ~ 7'I; for some [ > —1 and some
i€ Qo.

Assume first that T'/T}, is a regular H-module. If T'/T}, is sincere, since ug(T) is
tilting, we get

0 = Extp (T}, T/T})

~ DHomp (T /Ty, 7T}F)
~ DHomp (T /Ty, 7' 1;)
~ DHomp (r~(T/T}), I)
~ DHompg (r—"(T/T}), I;)

so that 7=(*1) is almost complete, non-sincere and regular. Therefore, it follows
from [HUOQS5, Proposition 7.3] that its unique complement, which is 7= UDTL s
regular. Therefore, T} is also regular and so is T' = T'/T}, @ T, which contradicts
Proposition

If T /T}, is non-sincere, then it is almost complete, non-sincere and regular and it
again follows from [HUQS, Proposition 7.3| that 7¢(T/T}) is sincere for any ¢ # 0.
According to Proposition [@.3] T is not regular so that necessarily T} ~ T_le for
some j € Qo and some [ > 0. Since T is silting, we get

0 = Exty (T/Ty, Tx)
~ Exty (T/Ty, 7' P;)
~ DHomp(r7 ' Pj, 7(T/T}))
~ DHomp(P;, T” (T/T3)).

But we know that 7¢(T'/T}) is sincere for any ¢t # 0. Therefore, [ = —1 and thus
Ty ~ 7P; ~ I;[—1] is in mod H[—1], which is a contradiction. Hence, T'/T}, cannot
be regular.

Thus, T contains at most one regular direct summand and dually, the first silting
object without preprojective direct summand contains at most one regular direct
summand. Then, as in the proof of Proposition[@.2] it follows from Lemma [@.1] that
the non-regular summands of silting objects between H and H[1] run over a finite
set of isomorphism classes. And since we cannot mutate twice consecutively at the
same vertex along a maximal green sequence, we cannot mutate twice a regular
summand consecutively. Therefore, there is necessarily a finite number of maximal
green sequences for Q). (I

APPENDIX A. OUTLINE OF THE ALGORITHM

A.1. Motivations. Given a cluster quiver (), we would like to answer the two
following questions:
(1) Does there exist a maximal green sequence for @, i.e is green(Q) # & ?
(2) If yes, how many maximal green sequences of each length are there in
green(Q), i.e what is |green; (Q)| for any £min (Q) < < lnax(Q).
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It appears that a computational approach is well suited to answer these two ques-
tions. The second one requires an enumeration of a considerable number of possi-
bilities, either explicit as the first following subsection shows, or implicit for greater
speeds as explained in Section [A.3]

A.2. Maximal green sequences enumeration principles. In order to answer
these two questions, a direct approach consists in trying every possible green se-
quences. Starting from the initial cluster quiver, we will mutate at every green
vertex of the corresponding framed quiver, get a new set of ice quivers, pick one,
mutate at every green vertex...and so on, up to finding a quiver without green
vertices. The detailed algorithm is given in Algorithm [l This algorithm is imple-
mented and available, see [DP12].
In this algorithm:

e the last method applied to a list pops the last element of the chained list;

e append, applied to a list, adds an element to the end;

e getNextGreenVertex, applied to a quiver, pops one green vertex from the
set of unexplored green vertices, returns NULL when all vertices are ex-
plored;

e mutate (i), applied to a quiver Q, returns the quiver obtained from mutat-
ing Q on the vertex i;

e mutationLength(), applied to a quiver, returns the length of the list of
mutations applied to the quiver.

This algorithm is a typical depth-first search: using the green vertices list of the
quivers as the branching element, it will consider the initial quiver as the root of a
search tree and explore branches constructed by sequences of green mutations.

Algorithm 1 Depth-first search algorithm.

Require: @ the framed quiver of a cluster quiver @), L an empty chained list green,
an array of integers, with all values equal to 0
Ensure: Vi, green[i] = |greeni(@)|
L.append(Q);
while L # ¢ do
w «— L.last()
if g(w) # 0 then
while i — w.getNextGreenVertex() do
x < w.mutate(t)
if g(x) # 0 then
L.append(x);
else
green|x.mutationLength()] < green[z.mutationLength()] + 1
end if
end while
else
green[w.mutationLength()] « green[w.mutationLength()] + 1
end if
end while

Typical problems with such an algorithm arise with green sequences of infinite
lengths (these may only appear if @ is not of finite cluster type). These will render
the algorithm inefficient as it has no way of detecting them. Practical, yet imperfect,
solutions include limiting the exploration up to a certain depth and/or the absolute
values of the entries of the c-matrix.
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Even if this algorithm is efficient in terms of memory footprint, and has provided
some preliminary results, its CPU usage remains overwhelming and limits its usage
to small instances. However, due to its explicit and exhaustive approach it allows to
list all the maximal green sequences encountered, an additional information which
might be of interest.

Remark A.1. Translating the definition of a maximal green sequence in the lan-
guage of c-vectors and exchange matrices instead of that of ice quivers, it is possi-
ble to define maximal green sequences for a skew-symmetrisable exchange matrix
B € M,(Z). There is however a slight difference due to the fact that the sign-
coherence for c-vectors is still conjectural in the skew-symmetrisable case, and
therefore, so is the analogue of Theorem Thus instead of mutating at green
vertices, we will mutate at vertices which are not red. With this modification, since
the input of Algorithm [Il only deals with the adjacency matrix B(Q) of the clus-
ter quiver () and since the implemented mutation rule is the matrix mutation rule
given in Definition [T} Algorithm [ also applies to skew-symmetrisable exchange
matrices. Some results obtained by this mean are provided in Appendices [B.3] and

B.2

A.3. Isomorphism discrimination. The CPU intensive nature of Algorithm [II
could be greatly reduced using the fact that along the exploration tree many nodes
may be isomorphic. Hence, branches can be cut and the computation can be
reduced. This however complexifies the algorithm:

(1) Explored quivers must be stored in memory, in order to be able to test
isomorphims;

(2) To limit the cost of searches in memory, complex data structures must be
set up;

(3) Specific algorithms must be unrolled when an isomorphism is found with a
quiver along a path leading to a maximal green sequence.

While the first two points are pure computer science, the last one requires expla-
nations: let i = (iy1,...,4;) be a maximal green sequence. For 1 < k < [, we let
QW) = py, 0o, (Q). Let j = (ji,... , jp) be a green sequence such that p; Q)
is isomorphic to @(k) and j # (i1,...,1k), then it can be asserted that j is the
beginning of another maximal green sequence for Q with length p+1— k. Addition-
nal care must be taken when branches are cut because of isomorphisms to quivers
which do not lead to maximal green sequences.

Implementing this algorithm allows a quick walk of the exploration tree. How-
ever, if the initial two questions are answered, the possibility to list all the maximal
green sequences explicitly is lost: the enumeration becomes implicit.

Remark A.2. The implementation of this algorithm provided in [DP12] relies on
NAUTY for the detection of isomorphims [McK81]. Therefore, it only works for
adjacency matrices of (cluster) quivers, that is for skew-symmetric matrices and
not for valued quivers. Therefore, the (optional) feature of isomorphism detection
cannot be used for skew-symmetrisable exchange matrices and one has to use the
implementation of Algorithm []in this case.

APPENDIX B. EXAMPLES

B.1. Rank two oriented exchange graphs. Any connected valued quiver with
two vertices is either of infinite type or of type Az, By, Cy or G3. We list below
the corresponding oriented exchange graphs.
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FI1GURE 18. The oriented exchange graph of type As.

FIGURE 19. The oriented exchange graph of type Bs or Cs.

F1GURE 20. The oriented exchange graph of type Gs.

,,,*,,. < (®) > @ > (E) < .,,*,,,

FI1GURE 21. Oriented exchange graph of of rank two in infinite type.

B.2. Examples of simply-laced cluster finite quivers.

B.2.1. Dynkin type A. Figures 22| 23] and 24] show lengths of maximal green se-
quences for certain quivers of finite cluster type A.

B.2.2. Dynkin type D. Figure[28lshows the lengths of the maximal green sequences
for the cluster finite quivers of type Dj.
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Q 1 2 3 1 2 3 2
/N
1=—3
|green(Q)] 9 10 9
Length

3 1 2

4 4 2 6

5 2 2 3

6 2 4

FIGURE 22. Maximal green sequences for quivers in the mutation

class of type As.

Q 1-2-3—-4|1=<=2—-3—-4 | 1-2<3—=4 2
1l—=3—->4

|green(Q)| 98 141 179 101
Length

4 1 3 5

5 10 11 9 12

6 22 13 9 21

7 22 18 16 33

8 18 25 28 25

9 13 30 42 10

10 12 41 70

FIGURE 23. Maximal green sequences for quivers in the mutation

class of type Ajy.

B.2.3. Dynkin type E. Consider the following quiver of type Fg:

Q:

1—-2—-=3—=4—075.

|

6

Then we have i, (Q) = 6, fnax(Q) = 36 and |green(Q)| = 253 085 705 387.
Consider the following quiver of type F7:

Q:

|

7

Then we have lin (Q) = 7, {max(Q) = 63 and
|green(Q)| = 372 133 972 845 031 649 851 164.

Consider the following quiver of type Ej:

Q:

|

8

1-2—-=3—-=4—-=5—=6.

1-2—-3—=4—-=5—=6—>1T1.

Then we have £y (Q) = 8, fmax(Q) = 120 and |green(Q)| ~ 5.641 - 10°1.

B.3. Examples of non-simply-laced cluster finite quivers.
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Q Ay | Az | Ay | As Asg A7

lgreen(Q)[ | 2 | 9 | 98 | 2 981 | 340 549 | 216 569 887
Length

2 1

3 1 1

4 4 1

5 2 10 1

6 2 |22 20 1

7 22 112 35 1

8 18 | 232 392 56

9 13 | 382 1744 1092

10 12 348 4 474 9 220

11 456 8 435 40 414

12 390 12 732 123 704

13 420 17 337 276 324

14 334 21 158 550 932

15 286 27 853 917 884

16 33 940 1 510 834

17 41 230 2 166 460

18 45 048 3370 312

19 50 752 4 810 150

20 41 826 7 264 302

21 33592 | 10 435 954

22 15 227 802

23 20 089 002

24 27 502 220

25 32 145 952

26 36 474 460

27 30 474 332

28 23 178 480

29

FIGURE 24. Maximal green sequences for linearly oriented quivers
of Dynkin type A,, with n < 7.

B.3.1. Dynkin type B. Figure[28 shows the lengths of the maximal green sequences
for the cluster finite valued quivers of type Bs.

B.4. Dynkin type Fj. Figure 27 shows the maximal green sequences for valued
quivers of type Fjy.

B.5. Examples of simply-laced affine types. For a quiver @ of affine type, we
have (non-maximal) green sequences of infinite lengths. However, if Conjecture [L22]
holds, in order to list all the maximal green sequences, it is enough to find some [ > 1
for which 0 < |greeng,;(Q)| = |greeng;,,(Q)| and then green(Q) = green(Q). In
the tables below, the empty cells should be read as zeros.

B.5.1. Ezamples in types A. Figure 28 shows the maximal green sequences for cer-
tain affine quivers of type A. We note that for all the values of n for which we
could perform the computations, the empirical maximal length of a quiver of type

.. n(n+3)
Apq is (T
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Q 3 3 2—>3 2<3
i P N AV
\ A \ 4 1<14 1<-4
|green(Q)| 250 468 112 150
Length

4 2 6

5 10 6 6

6 10 6 32 24

7 26 18 44 40

8 16 24 20 22

9 18 24 16 18

10 24 24 16

11 72 144 24

12 72 216

13

14

15

FIGURE 25. Maximal green sequences for quivers in the mutation
class of type Dy.

(1,2) (2,1) (2,1) (1,2)
Q 1-2-3 | 1=2<3 | 1-2<3 | 1=2-=73 /2\\(172)
1 3
(2,1)
|green(Q)| 14 7 18 18 12
Length
2
3 1 3 2 2
4 2 3 1 1 2
5 2 1 1 4
6 2 1 2 2 4
7
8 3 4 4 2
9 4 8 8
10
FIGURE 26. Maximal green sequences for valued quivers in the

mutation class of type Bs.
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(1,2)

1,2
1—=2—=3—=4

(2,1)

2,1
1=2<"3—=4

Q

|green(Q)| 40 366 163 282

Length
3
4 1 )
) 6 8
6 14 2
7 10 8
8 8 4
9 18 10
10 44 48
11 32 48
12 20 39
13 48 136
14 35 65
15 78 100
16 181 330
17 136 260
18 665 1104
19 1 668 4 072
20 2 002 5 843
21 4 592 12 672
22 11 643 42 391
23 13 420 62 676
24 5 741 33 461

FIGURE 27. Maximal green sequences for valued quivers of type Fj.




Q 1—=2 2 2—>3 2 2 2—=>3—=4 2—=3—=4—=5
/N / N /N /N / N / N
1——=3 | 1 4 11 4 |1 4 11 511 6
N , / N 5 e
|green®(Q)] 1 5 75 100 100 4 882 1645 136
Length
2 1
3 1
4 2 1 2 4
5 2 8 4 4 1
6 9 12 8 18 1
7 11 24 20 73 33
8 22 18 16 116 314
9 24 16 16 162 1 036
10 24 32 290 2 375
11 520 4176
12 1076 7 734
13 1 380 15 830
14 1246 34 178
15 72 986
16 143 626
17 252 023
18 371 780
19 397 012
20 342 032
21

SHONHNOAS NAHAYD TVINIXVIN NO

FIGURE 28. Maximal green sequences for type A quivers.
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B.6. Examples in types D. Figure shows the lengths of maximal green se-
quences for the affine quivers of type 134. It is interesting to note in that example
that even if the number of maximal green sequences depend on the orientations,
the minimal lengths and the empirical maximal lengths do not.

3 1 3 1 3
NS N/
1=2—-4 2 2
N /N /N
5| 4 5| 4 5
|green0(Q)| 286 068 210 284 641 496
Length
5 6 4 24
6 36 24 24
7 36 40 24
8 108 168 72
9 150 144 120
10 252 272 240
11 348 400 384
12 1 266 1144 960
13 2 394 1720 2 400
14 2 208 1792 4 224
15 3192 2912 5 760
16 5 976 4 928 9 792
17 10 512 8192 19 584
18 13 056 9 984 24 192
19 16 704 12 672 27 648
20 38 016 31 104 69 120
21 98 496 72 576 228 096
22 93 312 62 208 248 832

FIGURE 29. Maximal green sequences for affine quivers of type Dy.

For any n > 4, we denote by Q,, the quiver of affine type D, given by

1 n
N 7
Qn: 3—=>--=>n-—1
/! N
2 n+ 1.

Then FigureBllshows the values of £iin (Qn), €9, (Qr) and |green®(Q,, )| for certain
small values of n. We note that for all the values of n for which we performed the

computations, we obtained 9 . (Q,) = 2n? + 6n + 2.

B.6.1. Ezxamples in types E. For the following quiver of type Eﬁ

7

v
6

RQ: 1=3<=6—=4—=2
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‘ n ‘ Lonin (Qn) ‘ 0 () |green®(Q,,)]
4 5 22 210 284
) 6 38 371 667 875 684
6 7 o8 528 229 038 497 072 158 920
7 8 82 1 334 686 668 231 927 938 739 442 459 338 512

FiGURE 30. Maximal Green Sequences for affine quivers of type Bn

we obtain
loin (Q) =7, Lax(@Q) = 78
and
green®(Q) = 212 876 586 503 402 188 760 490 821 544.

For the following quiver of type E7
9

/

Q: 1=3<5<8—=6—=4—=2

we obtain
gmin (Q) = 87 eomax(Q) = 159
and green’(Q) ~ 1.976 - 1059,

B.7. Examples of non-simply-laced affine types. For affine types, we have
(non-maximal) green sequences of arbitrary lengths. Therefore, we could only com-
pute green,;(Q) for various values of /. In the table below we chose [ = 25. The
empty or non-appearing cells for [ < 25 should be read as zeros.

12091205 | Ly g 1 (L2 (12, D
(2,1)/ \\(1,2)
1<——3
e @I 7 6 6 7
Length
2
3 1 2 2
1
5 ) 2 2 1
6
7 2 2 2 3
g

FIGURE 31. Maximal green sequences for valued quivers in the
mutation class of type Bs.

B.8. An example from a surface without boundary. Consider the following
triangulation T' of the sphere with four punctures.
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As defined in [FSTOS|, the quiver Qr corresponding to this triangulation is the
following.

Qr:

Then a direct computation shows that

gmin (QT) = 127 ggnax(QT) =46
and
lgreen®(Q7)| = 1 044 863 666 576.

B.9. An exceptional mutation-finite type. Consider the following quiver

2=x3
v
Q: 6=1

N

4=5

which first appeared in [DOO0S]| as an example of mutation-finite quiver which is not
arising from a surface. Then we obtained

Cmin (Q) = 10, £° . (Q) = 30 and |green®(Q)| = 119 819 022.
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