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Abstract

Given a finite dimensional algebra A of finite global dimension, we consider the
trivial extension of A by the A − A-bimodule ⊕i≥2 Ext

i
A(DA,A), which we call the

higher relation bimodule. We first give a recipe allowing to construct the quiver of this
trivial extension in case A is a string algebra and then apply it to prove that, if A is
gentle, then the tensor algebra of the higher relation bimodule is gentle.

1 Introduction

The objective of this paper is to describe a new class of algebras, which we call higher relation
extensions. Our motivation comes from the study of cluster-tilted algebras, introduced by
Buan, Marsh and Reiten in [BMR], and in [CCS] for type A. Indeed, it was shown in [ABS]
that an algebra A is cluster-tilted if and only if there exists a tilted algebra C such that A is
isomorphic to the trivial extension of C by the C − C-bimodule Ext2C(DC,C). Moreover, a
recipe for constructing the quiver of this trivial extension was given in [ABS, Theorem 2.6].
The proof of the latter result rests on the fact that tilted algebras have global dimension 2.

Here, we consider the more general case of an algebra A having an arbitrary finite global
dimension and consider its trivial extension by the bimodule

⊕

i≥2 Ext
i
A(DA,A), which we

call the higher relation bimodule. We believe that this class of algebras, which we call higher
relation extensions, will be useful in the study of m-cluster-tilted algebras (see [FPT] [B]).
Our first objective is to describe the ordinary quiver of the higher relation extension of A in
the case where A is a string algebra in the sense of Butler and Ringel [BR]. We also assume
that the quiver of A is a tree. This is no restriction, because the universal cover of a string
algebra is a string tree [G]. Our theorem reads as follows.

Theorem 1.1 Let A = kQ/I be a string tree algebra. Then there exist two sequences (cℓ), (zℓ)
of points of Q such that the arrows in the quiver of the higher relation extension are exactly
those of Q plus one additional arrow from each zℓ to cℓ.

Our proof is constructive, in the sense that we give an algorithm allowing to construct
explicitly the sequences (cℓ) and (zℓ) and thus the quiver of the higher relation extension.

We then consider the particular case where A is a gentle algebra. Gentle algebras form
an important subclass of the class of string algebras. Part of their importance comes from
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the fact that this subclass is stable under derived equivalences [SZ]. While, as we show, the
higher relation extension algebra of a gentle algebra is monomial but not necessarily gentle,
we prove using our Theorem 1.1, that the tensor algebra of the higher relation bimodule is
gentle.

Theorem 1.2 Let A = kQ/I be a gentle algebra, then the tensor algebra of the higher relation
bimodule

⊕

i≥2 Ext
i
A(DA,A) is gentle.

The paper is organised as follows. In section 2, we fix the notation and recall some facts
and results about string and gentle algebras. Section 3 is devoted to the computation of
projective resolutions and injective coresolutions of uniserial modules over a string algebra.
We study the top of the higher extension bimodule in section 4 and we prove Theorem 1.1 in
section 5. Sections 6 and 7 are devoted to the case of gentle algebras.

2 Preliminaries

2.1 Notation

Throughout this paper, algebras are basic and connected finite dimensional algebras over
an algebraically closed field k. Given an algebra A, there always exists a (unique) quiver
Q = (Q0, Q1) and (at least) an isomorphism A ∼= kQ/I, where kQ is the path algebra of Q,
and I is an admissible ideal of kQ, see, for instance, [ASS]. Such an isomorphism is called a
presentation of the algebra. Given an algebra A, we denote by modA the category of finitely
generated right A-modules, and by D = Homk(−, k) the standard duality between modA and
modAop. For a point x in the quiver Q of A, we denote by P (x), I(x), S(x), ex respectively,
the corresponding indecomposable projective module, injective module, simple module and
primitive idempotent. We recall that a module M can be equivalently considered as a bound
quiver representation M = (Mi,Mα)i∈Q0,α∈Q1

. The projective, or injective, dimension of a
module M is denoted by pdM , or idM , respectively. The global dimension of A is denoted
by gldimA. For facts about the category modA, we refer the reader to [ARS] or [ASS].

2.2 Trivial extensions

Let A be an algebra and M an A − A-bimodule . The trivial extension of A by M is the
algebra A⋉M with underlying k-vector space

A⊕M = {(a,m)|a ∈ A, m ∈ M}

and the multiplication defined by

(a,m) · (a′, m′) = (aa′, am′ +ma′)

for a, a′ ∈ A and m,m′ ∈ M .
For instance, an algebra A is cluster-tilted if and only if there exists a tilted algebra C

such that A is the trivial extension of C by the so-called relation bimodule Ext2C(DC,C), see
[ABS].
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The ordinary quiver of a trivial extension is computed as follows (see, for instance, [ABS]):
let M be an A−A bimodule, then the quiver QA⋉M of A⋉M is given by

1)
(

QA⋉M

)

0
= (QA)0

2) For z, c ∈ (QA)0, the set of arrows in QA⋉M from z to c equals the set of arrows in QA

from z to c plus

dimk
ezMec

ezM(radA)ec + ez(radA)Mec

additional arrows from z to c.

The latter arrows are called new arrows, while the former are the old arrows.

2.3 String algebras

Recall from [BR] (see also [WW]) that an algebra A is called a string algebra if there exists
a presentation A = kQ/I (called a string presentation) such that:

S1) I is generated by a set of paths (thus A is monomial).

S2) Each point in Q is the source of at most two arrows and the target of at most two
arrows.

S3) For an arrow α, there is at most one arrow β and at most one arrow γ such that αβ /∈ I
and γα /∈ I.

Whenever we deal with a string algebra A, we always assume that it is given by a string
presentation A = kQ/I. We assume moreover that the relations (that is, the generators of I)
are of minimal length.

A reduced walk ω in Q is called a string if it contains no zero relations.To each string
ω in Q, we can associate a so-called string module [BR] in the following way. If ω is the
stationary path at j, then M(ω) = S(j). Let ω = ω1ω2 · · ·ωt be a string, with each ωi an
arrow or the inverse of an arrow. For each i such that 0 ≤ i ≤ t, let Vi = k; and for 1 ≤ i ≤ t,
let Vωi

be the identity map sending x ∈ Vi to x ∈ Vi+1 if ωi is an arrow and otherwise the
identity map sending x ∈ Vi+1 to x ∈ Vi. The string module M(ω) is then defined as follows:
for each j ∈ Q0, M(ω)j is the direct sum of the vector spaces Vi such that the source of ωi is
j if j appears in ω, and otherwise M(ω)j = 0; for each α ∈ Q1, M(ω)α is the direct sum of
the maps Vωi

such that ωi = α or ω−1
i = α if α appears in ω, and otherwise M(ω)α = 0.

A non-zero path ω in Q for a to b will sometimes be denoted by [a, b], whenever there is
no ambiguity. Then, the corresponding string module is denoted by M(ω) = M [a, b].

We also recall that the endomorphism ring of a projective module over a string tree algebra
A (a full subcategory of A) is also a string tree algebra.
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2.4 Gentle algebras

Recall from [AS] that a string algebraA = kQ/I is called gentle if in addition to (S1), (S2), (S3),
the bound quiver (Q, I) satisfies:

G1) For an arrow α, there is at most one arrow β and at most one arrow γ such that αβ ∈ I
and γα ∈ I.

G2) I is quadratic (that is, I is generated by paths of length 2).

For instance, cluster-tilted algebras of types A and Ã are gentle [ABCP].

3 Resolutions of uniserial modules

In this section, we compute minimal projective resolutions of an injective module, and dually
minimal injective coresolutions of a projective module over a string algebra. Throughout, we
let A = kQ/I be a string presentation.

Definition 3.1 Let [x0, y0] be a non-zero path from x0 to y0 in Q. We define inductively
the right maximal sequence of [x0, y0] as follows. This is a finite sequence of non-zero paths
[xi1i2···it , yi1i2···it ] with i1 = 0 and ij ∈ {0, 1} such that

1) Let [x0, y00],[x0, y01] be the maximal non-zero paths starting at x0 (where we agree that
[x0, y0] is contained in [x0, y00]).

Then we set
[x00, y00] = [x0, y00]\[x0, y0]

and
[x01, y01] = [x0, y01]\[x0, y0] = [x0, y01]\{x0}.

Observe that the path [x0, y01] may be empty (that is, the point y01 does not exist).

2) Inductively, assume that [x0i2···it−1
, y0i2···it−1

] has been defined. Let [x0i2···it−1
, y0i2···it−10]

and [x0i2···it−1
, y0i2···it−11] be the maximal non-zero paths starting at x0i2···it−1

, where we
agree that [x0i2···it−1

, y0i2···it−1
] is contained in [x0i2···it−1

, y0i2···it−10].

Then we set

[x0i2···it−10, y0i2···it−10] = [x0i2···it−1
, y0i2···it−10]\[x0i2···it−1

, y0i2···it−1
]

and
[x0i2···it−11, y0i2···it−11] = [x0i2···it−1

, y0i2···it−11]\{x0i2···it−1
}.

Observe that one or both of the paths [x0i2···it−1
, y0i2···it−10] and [x0i2···it−1

, y0i2···it−11] may
be empty and in this case the corresponding point may not exist.

The left maximal sequence of a non-zero path is defined dually. However, we do it explicity
for the convenience of the reader.
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Definition 3.2 Let [r0, s0] be a non-zero path from r0 to s0 in Q. We define inductively
the left maximal sequence of [r0, s0] as follows. This is a finite sequence of non-zero paths
[ri1i2···it , si1i2···it ] with i1 = 0 and ij ∈ {0, 1} such that

1) Let [r00, s0],[r01, s0] be the maximal non-zero paths ending at s0, where we agree that
[r0, s0] is contained in [r00, s0]. Then we set

[r00, s00] = [r00, s0]\[r0, s0]

and
[r01, s01] = [r01, s0]\[r0, s0] = [r01, s0]\{s0}.

Observe that the path [r01, s0] may be empty (that is, the point r01 does not exist).

2) Inductively, assume that [r0i2···it−1
, s0i2···it−1

] has been defined. Let [r0i2···it−1
, s0i2···it−10] and

[r0i2···it−1
, s0i2···it−11] be the maximal non-zero paths ending at s0i2···it−1

, where we agree that
[r0i2···it−1

, s0i2···it−1
] is contained in [r0i2···it−1

, s0i2···it−10]. Then we set

[r0i2···it−10, s0i2···it−10] = [r0i2···it−1
, s0i2···it−10]\[r0i2···it−1

, s0i2···it−1
]

and
[r0i2···it−11, s0i2···it−11] = [r0i2···it−1

, s0i2···it−11]\{s0i2···it−1
}.

Observe that one or both of the paths [r0i2···it−1
, s0i2···it−10] and [r0i2···it−1

, s0i2···it−11] may be
empty and in this case the corresponding point may not exist.

Our first result follows directly from the above definitions.

Theorem 3.3 Let A = kQ/I be a string algebra.

a) If [x0, y0] is a non-zero path in Q and

· · · → P3 → P2 → P1 → P0 → M [x0, y0] → 0

is a minimal projective resolution then, for l ≥ 1,

Pl−1 =
⊕

P (xi1i2···il)

where the direct sum is taken over all l-tuples (0, i2, · · · , il) such that ik ∈ {0, 1} for all
k with 2 ≤ k ≤ l and the point x0i2···il in definition 3.1 exists.

b) If [r0, s0] is a non-zero path in Q and

0 → M [r0, s0] → I0 → I1 → I2 → I3 → · · ·

is a minimal injective coresolution then, for l ≥ 1,

Il−1 =
⊕

I(si1i2···il)

where the direct sum is taken over all l-tuples (0, i2, · · · , il) such that ik ∈ {0, 1} for all
k with 2 ≤ k ≤ l and the point s0i2···il in definition 3.2 exists.
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Proof. We only prove a), since the proof of b) is dual.
Clearly, the projective cover of the uniserial module M [x0, y0] is P (x0), whose support consists
of the (at most two) maximal non-zero paths [x0, y01] and [x0, y01] starting at x0. Then,

Ω1M [x0, y0] = M [x00, y00]⊕M [x01, y01]

where x00 and x01 are defined as above. The rest follows from an easy induction. �

Example 3.4 Suppose that the string algebra is given by the following bound quiver.

1
//
3

��❄
❄❄

❄
//
4

//
5

//
6

2

??⑧⑧⑧⑧
7

//

��❄
❄❄

❄ 8 11
//
12

//
13

9
//
10

//

==④④④④
14

//
15

//
16

//
17

Here, and in the sequel, dotted lines indicate relations.
Considering the path [x0, y0] = [3, 9], the right maximal sequence is

[3, 9], [10, 15], [4, 5], [16, 17], [11, 11] = {11}, [6, 6] = {6}, [12, 12] = {12}, [13, 13] = {13}.

This sequence may be conveniently shown in the following diagram

[3, 9]

❑❑
❑❑

❑
[4, 5] {6}

[10, 15]

▼▼
▼▼

▼
{11} {12} {13}

[16, 17] .

The minimal projective resolution of M [3, 9] is the following (compare with the above diagram)

0 → P (13) → P (12) →

→ P (16)⊕ P (11)⊕ P (6) → P (10)⊕ P (4) → P (3) → M [3, 9] → 0,

where the morphisms are induced by the corresponding paths.
Similarly, taking [r0, s0] = [3, 9], the left maximal sequence is

{1} [3, 9]

from which we deduce the minimal injective coresolution

0 → M [3, 9] → I(9) → I(1) → 0.

We are interested in computing resolutions of injective and projective indecomposable
modules. These modules are usually not uniserial, neither are in general their first syzygy or
cosyzygy, respectively. In order to apply Theorem 3.3, the next lemma shows that we must
start from the second.
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Lemma 3.5 a) The second syzygy of an indecomposable injective module is the direct sum
of at most six uniserial modules.

b) The second cosyzygy of an indecomposable projective module is the direct sum of at most
six uniserial modules.

Proof. Let I(c) be an indecomposable injective A-module. If I(c) is uniserial, then there is
nothing to prove because of Theorem 3.3. Otherwise, let top I(c) = S(a0)⊕ S(a1). Then the
projective cover of I(c) is P (a0)⊕ P (a1). Let [ai, bi] and [ai, b

′
i] be the two maximal non-zero

paths starting at ai (with i = 0, 1), where we agree that [a0, c] is contained in [a0, b
′
0] and

[a1, c] is contained in [a1, b
′
1]. Let di be the direct successor of ai on the path [ai, bi] then

Ω1I(c) = M [d0, b0]⊕M [d1, b1]⊕M

where M is an indecomposable module, usually non-uniserial, such that topM = S(c) and
socM = S(b′0) ⊕ S(b′1). Hence, the projective cover of Ω1I(c) is P (d0) ⊕ P (d1) ⊕ P (c), and
Ω2I(c) is the direct sum of at most six uniserial modules obtained as follows.
Let [di, bi0], [di, bi1] be the maximal non-zero paths starting in di (with i = 0, 1), where we
agree that [di, bi] is contained in [di, bi0]. Then let

[di0, bi0] = [di, bi0]\[di, bi]

[di1, bi1] = [di, bi1]\[di, bi] = [di, bi1]\{di}.

Let also [c, c0] and [c, c1] be the maximal non-zero paths starting at c, where we agree that
[c, b′0] is contained in [c, c0] and [c, b′1] is contained in [c, c1].
We let

[c′0, c0] = [c, c0]\[c, b
′
0]

and
[c′1, c1] = [c, c1]\[c, b

′
1].

It is then clear that

Ω2I(c) = M [d00, b00]⊕M [d01, b01]

⊕ M [d10, b10]⊕M [d11, b11]

⊕ M [c′0, c0]⊕M [c′1, c1]

which establishes a). Statement b) is dual. �

Corollary 3.6 a) Let I(c) be an indecomposable injective module such that top(I(c)) =
S(a0)⊕ S(a1). Then I(c) has the following minimal projective resolution

· · · →
⊕

j;(0,i2,i3)
P (xj

0i2i3
) →

⊕

j;(0,i2)
P (xj

0i2
) →

⊕

j P (xj
0) →

→ P (d0)⊕ P (c)⊕ P (d1) → P (a0)⊕ P (a1) → I(c) → 0
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with the morphisms induced by the paths, where {xj
0 | 1 ≤ j ≤ 6} = {d00, d01, d10, d11, c

′
0, c

′
1}

and ij ∈ {0, 1}.

b) Let P (z) be an indecomposable projective module such that soc(P (z)) = S(w0)⊕ S(w1).
Then P (z) has the following minimal injective coresolution

0 → P (z) → I(w0)⊕ I(w1) → I(v1)⊕ I(z)⊕ I(v2) →
⊕

j I(s
j
0) →

→
⊕

j;(0,i2)
I(sj0i2) →

⊕

j;(0,i2,i3)
I(sj0i2i3) → . . .

with the morphisms induced by the paths, where {sj0 | 1 ≤ j ≤ 6} are as above and
ij ∈ {0, 1}.

Proof. This follows from Lemma 3.5 and Theorem 3.3. �

Corollary 3.7 With the above notations

a) All the points xj
0, x

j
0i2
, · · · , xj

0i2...il
are targets of relations.

b) All the points sj0, s
j
0i2
, · · · , sj0i2...il are sources of relations.

Proof. This follows from the construction of these points. �

4 The top of the higher relation bimodule

Definition 4.1 Let A be a finite dimensional algebra of finite global dimension. The A−A-
bimodule

(
⊕

i≥2 Ext
i
A(DA,A)

)

with the natural action is called the higher relation bimod-

ule. The trivial extension
A⋉

(

⊕

i≥2

ExtiA(DA,A)
)

of A by its higher relation bimodule is called the higher relation extension of A.

If gldimA ≤ 2, then the higher relation extension of A coincides with its relation extension,
as defined in [ABS].

Our objective in this section is to construct the ordinary quiver of the higher relation
extension of a string algera A of finite global dimension.

As mentioned in the introduction, we also assume that the ordinary quiver QA of A is a
tree.

Let thus A = kQ/I be a string algebra, with Q a tree and M an A − A-bimodule. We
have

radM = M(radA) + (radA)M
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and then
topM = M/[M(radA) + (radA)M ].

If M =
⊕

i≥2 Ext
i
A(DA,A), then, clearly, topM =

⊕

i≥2 topExt
i
A(DA,A). In order to de-

scribe this top, we start by describing the modules topA ExtiA(I(c), A) and topExtiA(DA,P (z))A
for all points c, z ∈ (QA)0.

In the following, we use the notation of section 3.

Proposition 4.2 Let A = kQ/I be a string tree algebra and l ≥ 0. Then Extl+2
A (I(c), P (z)) 6=

0 if and only if one of the following two conditions hold:

a) there exists a non-zero path ω : z  xj
i1i2···il+1

not passing through xj
i1i2···il

and whose

compositions with xj
i1i2···il+1

 xj
i1i2···il+2

are both zero.

b) z = xj
i1i2···il

and xj
i1i2···il0

, xj
i1i2···il1

both exist. In this case, a non-zero element is induced

from the difference of the two paths xj
i1i2···il

 xj
i1i2···il0

and xj
i1i2···il

 xj
i1i2···il1

.

Remark 4.3 Observe that in case (b), we have the following situation

x
j
i1i2···il−1

v ///o/o/o/o/o/o/o
z=x

j
i1i2···il

u0 ///o/o/o/o/o/o/o

u1

(((h
(h

(h
(h

(h
(h

(h
(h

x
j
i1i2···il0

x
j
i1i2···il1

where vu0, vu1 are zero paths.

Proof. Let

· · · → ⊕P (xj
i1···il+2

)
dl+3

→ ⊕P (xj
i1···il+1

)
dl+2

→ ⊕P (xj
i1···il

) → · · · → Pc → I(c) → 0

be a minimal projective resolution of I(c). Recall that the morphisms dk are induced from
the paths in Q.
If condition (a) holds then it follows from the definition of Extl+2

A (I(c), P (z)) that ω induces
a non-zero element in Extl+2

A (I(c), P (z)).
If condition (b) holds, then Pl+2 = ⊕P (xj

i1···il+1
) has two indecomposable summands P (xj

i1···il0
),

P (xj
i1···il1

), whose images d(P (xj
i1···il0

)) and d(P (xj
i1···il1

)) lie in the same indecomposable sum-

mand P (xj
i1···il

) of Pl+1, together with two non-zero morphisms νi : P (xj
i1···ilil+1

) → P (z)

(il+1 = 0, 1) such that there exist two morphisms γi : P (xj
i1···il

) → P (z) with νi = γid.

P (xj
i1···il0

)⊕ P (xj
i1···il1

)
d //

ν1

��
ν2

��

P (xj
i1···il

)

[γ1,γ2]
uu❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

P (z)
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In this case [ν1 − ν2]
t : P (xj

i1···il0
) ⊕ P (xj

i1···il1
) → P (z) does not factor through P (xj

i1···il
)

because dimk Hom(P (xj
i1···il0

) ⊕ P (xj
i1···il1

), P (z)) = 2 while dimk Hom(P (xj
i1···il

), P (z)) = 1,

since the algebra is a tree algebra. This shows that Extl+2
A (I(c), P (z)) 6= 0.

Conversely, suppose that Extl+2
A (I(c), P (z)) contains a non-zero element [f ]. Then [f ] is in

the class of a morphism f : ⊕P (xj
i1···il+1

) → P (z) such that fdl+3 = 0. Since A is a tree string
algebra, there are at most two indecomposable summands on which f is non-zero, because
otherwise there are non-zero paths from z to three points xj

i1···ıl+1
and these induce a full

subcategory of type D4 which contradicts the fact that A is string. Thus we get a morphism
f : P (xj

i1···il+1
)⊕P (xj′

i′
1
···i′

l+1

) → P (z) which does not factor through dl+2. If z = xj
i1···il

then we

must have j = j′, i = i′, · · · , il = i′l and il+1 6= i′l+1. Suppose z 6= xj
i1···il

. If both non-zero paths

z  xj
i1···il+1

, z  xj′

i′
1
···i′

l+1

which induce f pass through xj
i1···il

then we have a contradiction

to A being string. If one non-zero path z  xj
i1···il+1

passes through xj
i1···il

then the other

satisfies condition (a). Indeed, the composition with xj′

i′
1
i′
2
···i′

l+1

 xj′

i′
1
i′
2
···i′

l+2

vanishes because

our original path corresponds to an element of Extl+2
A (I(c), P (z)). Similarly, if z  xj

i1···il+1

does not pass through neither xj
i1···il

nor xj′

i′
1
···i′

l+1

then both paths satisfy condition (a). �

The following example ilustrates condition (b).

Example 4.4 Let A be given by the quiver

3

1 // 2

::tttttt

$$❏
❏❏

❏❏
❏

4

bound by rad2A = 0. Then the minimal projective resolution of I(1) is

0 → P (3)⊕ P (4) → P (2) → P (1) → I(1) → 0.

Let j1 : P (3) → P (2) and j2 : P (4) → P (2) be the canonical inclusions, then it is easily seen
that the morphism

[j1 − j2]
t : P (3)⊕ P (4) → P (2)

induces a non-zero element of Ext2A(I(1), P (2)).

Corollary 4.5 Assume A is a gentle tree algebra, then Extl+2
A (I(c), P (z)) 6= 0 if and only if

there exists a non-zero path ω : z  xj
i1i2···il+1

not passing through xj
i1i2···il

and whose composi-

tions with xj
i1i2···il+1

 xj
i1i2···il+2

are both zero.

Proof. Indeed, if A is gentle, then condition (b) cannot occur as shown in the remark preceding
the proof. �

Corollary 4.6 a) Let ω : z  xj
i1i2···il+1

be a non-zero path as in Proposition 4.2 a).
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a1) Assume that a point xj
i1i2···il+2

exists, then w induces an element of the top of

A Extl+2
A (I(c), A) if and only if z is the starting point of a relation of the form

ωω′ when ω′ : xj
i1i2···il+1

 xj
i1i2···il+2

a2) Assume that no point xj
i1i2···il+2

exists, then w induces an element of the top of

A Extl+2
A (I(c), A) if and only if z = xj

i1i2···il+1
and ω is the stationary path in z.

b) In the situation of Proposition 4.2 b), the class of the difference of the paths xj
i1...il

 

xj
i1...il0

and xj
i1...il

 xj
i1...il1

in Extl+2
A (I(c), P (z)) lies in the top of A Extl+2

A (I(c), A) if

and only if there are two minimal relations z  xj
i1...il0

 xj
i1...il0il+2

and z  xj
i1...il1

 

xj
i1...il1il+2

.

Proof.

a1) The morphism f : Pl+2 = ⊕P (xj
i1...ilil+1

) → P (z) induced by ω factors through P (s)

where s is the source of a relation ending at xj
i1i2···il+2

and such that s lies on the path

ω. So, f induces an element on the top of A Extl+2
A (I(c), A) if and only if s = z.

a2) This follows from the fact that the morphism f : Pl+2 = ⊕P (xj
i1...ilil+1

) → P (z) factors

through the identity of P (xj
i1i2···il+1

).

b) Let f be a representative of the class of the difference of paths xj
i1...il0

 xj
i1...il

and

xj
i1...il1

 xj
i1...il

in Extl+2
A (I(c), P (xj

i1...il
)). Then

f = [f0 f1 0] : P (xj
i1...il0

)⊕ P (xj
i1...il1

)⊕ P ℓ+2 −→ P (xj
i1...il

).

Suppose first that there is no relation z  xj
i1...il0

 xj
i1...il0il+2

. Then any relation ending

at xj
i1...il0il+2

must start at a successor y of z. Therefore there exists g : P (xj
i1...il0

) → P (y)
such that f0 factors through g, whence f = [hg f1 0], for some morphism h. So [f ] is
not in the top of A Extl+2

A (I(c), A).

Conversely, if we have two minimal relations as in the statement, and [f ] is not in the
top of A Extl+2

A (I(c), A), then [f ] = [h][g] for some [g] ∈ Extl+2
A (I(c), P (y)), which is

represented by a morphism

g : P (xj
i1...il0

)⊕ P (xj
i1...il1

) −→ P (y).

Then y lies on the non-zero path z  xj
i1...il0

or z  xj
i1...il1

(or both) and y 6= z.

But then g dl+3,0 : P (xj
i1...il0il+2

) → P (y) is non-zero, because it is given by the non-

zero path y  xj
i1...il0

 xj
i1...il0il+2

, and this contradicts the fact that [g] belongs to

Extl+2
A (I(c), P (y)). �

We summarise the results in the theorem below.
For each point c in a string algebra A = kQ/I, we compute the minimal projective res-

olution of I(c) given in Corollary 3.6. Then for all l ≥ 0, the l + 2-nd term in the minimal
projective resolution of I(c) is given by Pl+2 =

⊕

j,(i1,i2,··· ,il+1)
P (xj

i1i2···il+1
).
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Whenever the point xj
i1i2···il+2

exists, let zji1i2···il+2
be the source of the relation ending in

xj
i1i2···il+2

and passing through xj
i1i2···il+1

.
For each j ∈ {1, · · · , 6} and for each l ≥ 0, define

Z
j
i1i2···il+1

=

{

zji1i2···il+10
if xj

i1i2···il+10
exists;

xj
i1i2···il+1

otherwise,

and let

ζji1...il+1
=

{

[xj
i1···il

,Zj
i1i2···il+1

] if xj
i1i2···il0

, xj
i1i2···il1

both exist;
[

xj
i1···il

,Zj
i1i2···il+1

]

\ {xj
i1···il

} otherwise.

Dually, whenever the point sji1i2···il+2
exists, let cji1i2···il+2

be the target of the relation starting

in sji1i2···il+2
and passing through sji1i2···il+1

. For each j ∈ {1, · · · , 6} and for each l ≥ 0, define

C
j
i1i2···il+1

=

{

cji1i2···il+10
if sji1i2···il+10

exists;

sji1i2···il+1
otherwise,

and let

Θj
i1...il+1

=

{

[Cj
i1i2···il+1

, sji1···il] if sji1i2···il0, s
j
i1i2···il1

both exist;
[

C
j
i1i2···il+1

, sji1···il

]

\ {sji1···il} otherwise.

Theorem 4.7 Let A = kQ/I be a string tree algebra and l ≥ 0. The following are equivalent

(a) Extl+2
A (I(c), P (z)) 6= 0;

(b) there exists j such that z ∈ ζji1i2···il+1
;

(c) there exists j such that c ∈ Θj
i1i2···il+1

.

Proof. The equivalence of (a) and (b) follows from Proposition 3.6 and from the definition
of ζji1i2···il+1

, using the fact that if both points xj
i1i2···il+2

exist then we have the following
situation in the quiver

··· x
j
i1···il

//
···

//
z···

//
z
j
l,i1i2···il+10

//
···•

//
x
j
i1···il+1

···
//

%%❑❑
❑❑

❑❑
❑❑

❑❑
x
j
i1···il+10

x
j
i1···il+11

.

The equivalence of (a) and (c) follows from the dual argument. �

Remark 4.8 One can easily compute the top of A Extl+2
A (I(c), A) using Corollary 4.6.
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5 The quiver of the higher relation extension

Knowing how to compute top A ExtiA(I(c), A) and topExtiA(DA,P (z))A allows us to find the
new arrows of the higher relation extension of a string tree algebra A since they are in bijection
with a basis of

topExtiA(DA,A) = ExtiA(DA,A)/ rad(ExtiA(DA,A))

=
ExtiA(DA,A)

(radA) ExtiA(DA,A) + ExtiA(DA,A)(radA)
.

Note that ExtiA(DA,A) ·ec = ExtiA(I(c), A) is a left A-module and that ez ·Ext
i
A(DA,A) =

ExtiA(DA,P (z)) is a right A-module.
Given a right (left) A-moduleM , we denote by Pi(M) the i-th term in a minimal projective

resolution of M and by Ii(M) the i-th term in a minimal injective coresolution of M .
If we represent the elements of ExtiA(DA,A) as classes [fcz] of morphisms fcz : Pi(I(c)) →

P (z) such that the composition of fcz with the map Pi+1(I(c)) → Pi(I(c)) of the projective
resolution is zero, then we are considering the left A-module structure of ExtiA(DA,A). There-
fore, [fcz] lies in (radA) ExtiA(DA,A) if and only if [fcz] ∈ ExtiA(I(c), A) lies in the radical of
the left A-module ExtiA(I(c), A).

In terms of morphisms, [fcz] is in radExtiA(I(c), A) if and only if fcz factors non-trivially
through another morphism fcy : Pi(I(c)) → P (y) such that the following diagram is commu-
tative

Pi(I(c))
fcz //

fcy

$$■
■■

■■
■■

■■
P (z)

P (y)

h
;;①①①①①①①①

where the map h is given by the left-multiplication by a path in Q from z to y, and the
composition of fcy with Pi+1(I(c)) → Pi(I(c)) is zero.

Dually, we can represent the elements of ExtiA(DA,A) as classes [gcz] of morphisms gcz :
I(c) → Ii(P (z)) such that the composition of gcz with the map Ii(I(c)) → Ii+1(I(c)) of the in-
jective coresolution is zero. This corresponds to the right A-module structure of ExtiA(DA,A).
Therefore, [gcz] lies in ExtiA(DA,A)(radA) if and only if [gcz] ∈ ExtiA(DA,P (z)) lies in the
radical of the left A-module ExtiA(DA,P (z)).

In terms of morphisms, [gcz] is in radExtiA(DA,P (z)) if and only if gcz factors non-trivially
through another morphism gbz : I(b) → Ii(P (z)) such that the following diagram is commu-
tative

I(c)
gcz //

h′

""❉
❉❉

❉❉
❉❉

❉
Ii(P (z))

I(b)

gbz
::✉✉✉✉✉✉✉✉✉
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where the map h′ is given by the right-multiplication by a path in Q from b to c, and the
composition of gbz with Ii(P (c)) → Pi+1(P (c)) is zero.

Moreover there is an isomorphism of vector spaces

LR :
⊕

c∈Q0

ExtiA(I(c), A) −→
⊕

z∈Q0

ExtiA(DA,P (z))

such that LR([fcz]) and fcz induce the same class in ExtiA(DA,A). Thus, [fcz] is in radExtiA(DA,A)
if and only if [fcz] ∈ radExtiA(I(c), A) or LR([fcz]) ∈ radExtiA(DA,P (z)).

Algorithm 5.1

• Compute topA Exti(I(c), A) for all c ∈ Q0 using Theorem 4.7 and Corollary 4.6. (For
efficiency we can restrict to the points that are the source or the target of a relation
because of Corollary 4.6 and Corollary 3.7).

• For each c, z ∈ Q0, let {ρcz1, ρcz2, · · · } be a basis for ez · topA Exti(I(c), A).

• Let Bi
0 = {ρczj : c, z ∈ Q0, c the source or target of relations} be the set that spans the

vector space topExti(DA,A).

• Compute topExti(DA,P (z))A for each z such that ρczj ∈ Bi
0 using Theorem 4.7 and the

dual statements of Corollary 4.6.

• A basis of topExti(DA,A) is

Bi = Bi
0 \ {ρczj ∈ radExti(DA,P (z))A; c, z, j}.

Each element of Bi has a triple subcript czj, and each such element gives rise to exactly
one new arrow z → c in the quiver of the higher relation extension.

Theorem 5.2 Let A = kQ/I be a string tree algebra. Then the algorithm 5.1 computes two
sequences (cl), (zl) of vertices of QA such that the arrows in the quiver of the higher relation
extension are exactly those of QA plus one additional arrow from each zl to cl.

Proof. This follows from the discussion preceding the algorithm. �

Remark 5.3 The vertices (cl), (zl) are not necessarily distinct, there may be repetitions.

Example 5.4 Let A = kQ/I be the string algebra given by the following bound quiver:

1
//
2

//
3

//
4.

Then there exists an element ρ2,4 ∈ e4·topA Ext2A(I(2), A) which is not in topExt2A(DA,P (4))A·
e2 and therefore not in topA Ext2A(DA,A)A. Thus the quiver of the higher relation extension
is

1
//
2

//
3

//
4.

xx
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Example 5.5 In this example, the higher relation extension contains an Ext2-arrow 5 → 1
although there is no relation between the points 5 and 1. Let A = kQ/I be the string algebra
given by the bound quiver:

1
//
2

//
3

//
4 .

5

??⑧⑧⑧⑧

Then the quiver of the higher relation extension of A is the following:

1
//
2

//
3

//
4

xx

qq

.

5

??⑧⑧⑧⑧
UU

Example 5.6 Let A be the string algebra of Example 3.4. Then the quiver of the higher
relation extension of A is the following:

1
//
3

��❄
❄❄

❄
//
4

//
5

//
6

vv vv

2

??⑧⑧⑧⑧
7

//

��❄
❄❄

❄ 8
tt

11
//
12

//
13

}}
9

//
10

//

==④④④④
14

//
15

//
16

YY

//
17

.

Example 5.7 This example illustrates the situation in Corollary 4.6 (b). Let A = kQ/I be
the string algebra given by the bound quiver:

1
//
2

//

��❄
❄❄

❄ 3
//
4

5
//
6 .

Then the quiver of the higher relation extension of A is the following:

1 88 2oo //

��❄
❄❄

❄ 3
//
4

||

5
//
6

ZZ

.

Note the existence of a 2-cycle.

6 The higher relation bimodule for gentle algebras

Recall that a set of monomial relations {κi}i=1,..,t is called an overlapping if the paths κi and
κi+1 have a common subpath ϑ such that κi = ϑiϑ and κi+1 = ϑϑi+1, for all i = 1, .., t − 1.
A maximal t-overlapping is an overlapping {κi}i=1,..,t such that there exists no monomial
relation κ such that the sets {κ, κi, i = 1, · · · , t} and {κi, i = 1, · · · , t, κ} are an overlapping,
see [GHZ, Gu].
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Lemma 6.1 Let κ = (κ1, · · · , κt) be the following maximal t-overlapping over a gentle algebra
A = kQ/I:

1
//

κ1

2
//

κ2

3
//
4

// · · · •

κt−1

t
//

κt

t+1
//
t+2.

Then, for the injective I(1) associated to the vertex 1, the sequence of xi1i2···it is:

x0 = 3, x00 = 4, x000 = 5, · · · , xi1i2···it = x00···0 = t + 2.

Proof. This follows from the construction of the points xi1i2···it given in section 3. �

Remark 6.2 Observe that there may be other points xi1i2···it where some ij 6= 0. In the
Lemma we only consider one branch of the quiver which contains all the points x00···0.

Proposition 6.3 For every maximal t-overlapping κ = (κ1, · · · , κt) from c to z there is
exactly one new arrow α(κ) : z → c in the higher relation extension which is induced by
an element of Extl+1

A (I(c), P (z)) and these are the only new arrows in the higher relation
extension. Moreover, we have the following relations:

(a) α(κ)α1 = 0 and αt+1α(κ) = 0, where α1 and αt+1 denote the first and the last arrow of
κ;

(b) ζρζ ′ where ζ, ζ ′ are new arrows and ρ is a path consisting of old arrows.

Proof. By Corollary 4.5, Extl+2
A (I(c), P (z)) 6= 0 if and only if there is a non-zero path

ω : z  xi1i2···il+1
not passing through xi1i2···il and such that the compositions with the non-

zero paths ω′
il+2

: xi1i2···il+1
 xi1i2···il+2

are both zero if il+2 exists, see figure.

xi1i2···il

//
xi1i2···il+1

//
xi1i2···il+2

z

55
5u

5u
5u

5u
5u

5u
5u

5u
5u

.

But the previous Lemma implies that xi1i2···il → xi1i2···il+1
→ xi1i2···il+2

is a relation of length
2, contradicting that A is gentle. Therefore il+2 does not exist, that is, pd I(c) = l+ 2. Then
we have the situation

xi1i2···il−1

//
xi1i2···il

αt+1 //
xi1i2···il+1

z

22
2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r

and xi1i2···il+1
is the target of an overlapping ω.

Thus by Corollary 4.5, Extl+2
A (I(c), P (z)) 6= 0 if and only if there is a non-zero path ω from z

to xi1i2···il+1
not passing through xi1i2···il. Then, by Corollary 4.6 a2), ω induces an element of

the top of A ExtiA(I(c), A) if and only if z = xi1i2···il+1
.
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To check whether ω : z → xi1i2···il+1
induces an element of topExtl+2

A (DA,A), we can apply

the algorithm 5.1. Hence, ω induces an element of the topExtl+2
A (DA,A) if and only if z is

the starting point of the overlapping κ.
The result about the new arrows now follows from the algorithm.

Using the fact that Extl+2
A (I(c), P (z)) 6= 0 if and only if there is a non-zero path ω from

z to xi1i2···il+1
not passing through xi1i2···il with z = xi1i2···il shows that αt+1α(κ) = 0. Dually,

one proves that α(κ)α1 = 0, and the relations of the form ζρζ ′ occur since we are dealing with
a trivial extension. �

The following example shows that the higher relation extension of a gentle algebra is not
necessarily gentle.

Example 6.4 Let A be given by the bound quiver

1 // 2 // 3 4ρ
oo // 5 // 6.

Then the higher relation extension coincides with the relation extension and has the quiver

1 // 2 // 3

ζ′

vv
4

ρoo // 5 // 6

ζ

vv

bound by relations of length 2 and the relation ζρζ ′, which is of length 3.

Corollary 6.5 The tensor algebra of the higher relation bimodule has the same quiver as the
higher relation extension and has the relations in Proposition 6.3 (a). In particular its relation
ideal is quadratic. �

7 The tensor algebra of a gentle algebra

Theorem 7.1 Let A be a gentle algebra.

(a) The tensor algebra TA(
⊕

i≥2 Ext
i
A(DA,A)) is gentle.

(b) The higher relation extension A⋉ (
⊕

i≥2 Ext
i
A(DA,A)) is monomial.

Proof. Since the universal cover of a gentle algebra is a gentle tree, we may assume that
A is a tree. We prove the conditions S1), S2), S3), G1) and G2) of section 2.

S2) At every point there are at most two incoming arrows (dually, outcoming arrows).

Suppose there are three arrows α, β, γ with target x (see figure)

α
&&◆◆

◆◆
◆◆

x γ
oo

β

88♣♣♣♣♣♣
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Then at least one, say γ, is a new arrow. Hence, γ corresponds to an overlapping
ω = (ω1, ω2, · · · ) with source x and there is no relation involving α or β and overlapping
with ω1, that is,

•

α

  ❆
❆❆

❆

x
//

ω1

•
//
•

•

β

>>⑥⑥⑥⑥

Because A is gentle, at least one of the arrows α and β is new. Assume α is old and
β is new. Then we have two such overlappings ω, ω′ and no relation involving α and
overlapping with ω or ω′, that is we have the following situation in the bound quiver of
A.

•

α

  ❅
❅❅

❅❅
❅❅

❅

x
//

��

ω1

ω′

•
//
•

•

��
•

which yields a contradiction.

Finally, if all three arrows α, β, γ are new, we get three overlappings starting at x.
Because A is gentle, condition G1) implies that we have three arrows having x as a
source, a contradiction.

S1,G2) Suppose we have a minimal relation involving at least two paths in the sense of [MP].
Then, in the higher relation extension we have at least two paths c1, c2 starting and
ending at the same point with at least one new arrow in each of these paths. Let
ci = ci1αici2 where αi is a new arrow, i = 1, 2.

Assume first that there is exactly one new arrow on each path ci. Then each αi corre-
sponds to an overlapping ωi in A starting at the target of αi and ending at its source,
and this contradicts the assumption that A is a tree.

If ci contains several new arrows, the same argument as before applies.

This shows that the higher relation extension of A is monomial and hence that the tensor
algebra is also monomial, and even has a quadratic relation ideal, because of Corollary
6.5.

S3) Suppose we have the following subquiver

• α

&&▼▼
▼▼

▼▼

x γ
//
•

•
β

88qqqqqq
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such that αγ and βγ are not in the ideal I of the tensor algebra TA(
⊕

i≥2 Ext
i
A(DA,A)).

Then one of the three arrows is new. First assume that γ is a new arrow, then γ
corresponds to an overlapping ω ending at x which implies that α or β must be a new
arrow, say β which correspond to another overlapping ω′ starting at x. But then the
last arrow of ω and the first arrow of ω′ are not bound by a relation and also α is not
bound by a relation with the first arrow of ω′. This contradicts A being gentle.

Suppose now that α is a new arrow corresponding to an overlapping ω starting at x.
Because of the first case, we may assume that γ is not new. Since β is not bound by
a relation with the first arrow in ω, it must be with γ, contradicting the assumption
βγ /∈ I.

G1) Suppose we have a subquiver

• α

&&▼▼
▼▼

▼▼

x γ
//
•

•
β

88qqqqqq

such that αγ and βγ are in the relation ideal of the tensor algebra TA(
⊕

i≥2 Ext
i
A(DA,A)).

If γ is a new arrow corresponding to an overlapping ωγ ending at x then α or β must
be new, say β, and corresponding to an overlapping ωβ as above, which is bound by no
relation with α. It follows from our description of the bound quiver that the new arrow
β is not bound by a relation with γ, because γ is not in the overlapping ωβ, and this is
a contradiction. �
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