ON A CATEGORY OF CLUSTER ALGEBRAS

IBRAHIM ASSEM, GREGOIRE DUPONT AND RALF SCHIFFLER

ABsTrACT. We introduce a category of cluster algebras with fixed initial seeds. This category
has countable coproducts, which can be constructed combinatorially, but no products. We char-
acterise isomorphisms and monomorphisms in this category and provide combinatorial methods
for constructing special classes of monomorphisms and epimorphisms. In the case of cluster
algebras from surfaces, we describe interactions between this category and the geometry of the

surfaces.
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INTRODUCTION

Cluster algebras are particular commutative algebras which were introduced by Fomin and
Zelevinsky in [FZ02] in order to provide a combinatorial framework for studying total positivity
and canonical bases in algebraic groups. Since then, a fast-growing literature focused on the
numerous interactions of these algebras with various areas of mathematics like Lie theory, Poisson
geometry, representation theory of algebras or mathematical physics. The study of the cluster
algebras as algebraic structures in themselves can essentially be found in the seminal series of

articles [FZ02| [FZ03| BEZ05, [FZ07| and their ring-theoretic properties were recently studied in
IGLS11]

For a long time, an obstacle to the good understanding of cluster algebras was that they are
defined recursively by applying a combinatorial process called mutation. However, the interactions
of cluster algebras with either the (combinatorial) Teichmiiller theory or the representation theory
of algebras led to various closed formulae which enlightened the structure of cluster algebras, see
[MSWT1, [DWZI0, Plalla, HLI0)].

In order to get a better comprehension of cluster algebras, the next step is thus to define a
categorical framework for their study. Therefore, one has to find what are the “right” morphisms
between cluster algebras. The most natural idea is to look at ring homomorphisms which commute
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with mutations. For bijective morphisms from a coefficient-free skew-symmetric cluster algebra to
itself, this gave rise to the notion of cluster automorphisms, introduced in [ASSI1I]. However,
in more general settings this idea turns out to be slightly too restrictive in order to get enough
morphisms between non-isomorphic cluster algebras.

In this article, we slightly relax this first idea and propose a similar definition of cluster morphism
between arbitrary skew-symmetrisable cluster algebras of geometric type (with non-invertible co-
efficients). The definition is still based on the idea that morphisms between cluster algebras should
commute with mutations but, broadly speaking, we also allow the morphisms to specialise certain
cluster variables to integral values or to send frozen variables to exchangeable ones (see Definition
22).

With this notion of morphisms, we obtain a category Clus with countable coproducts (Lemma
but generally without products (Proposition . We prove that in Clus, the isomorphisms
are the bijective morphisms (Corollary, the monomorphisms are the injective monomorphisms
(Proposition while the epimorphisms are not necessarily surjective (Remark .

Inspired by the interactions between geometry and the combinatorics of cluster algebras asso-
ciated with surfaces in the sense of [FST08|, we define for arbitrary cluster algebras concepts of
gluings and cuttings which provide natural classes of monomorphisms and epimorphisms in Clus
(see Sections [5 and [7).

We also study specialisations of cluster variables in this categorical context. We prove that
the usual specialisations of frozen variables to 1 yield epimorphisms in Clus. More surprisingly,
for cluster algebras from surfaces or for acyclic cluster algebras, we prove that specialisations of
exchangeable cluster variables also give rise to epimorphisms in Clus (Theorems and .

The article is organised as follows. After a brief section recalling our conventions, Section
recalls the principal definitions on cluster algebras which we will use along the article. In Section
we introduce the notion of rooted cluster morphisms and the category Clus and we establish some
basic properties. Section [3|is devoted to the study of isomorphisms in Clus, generalising previous
results of [ASSII] on cluster automorphisms. Section [4]is devoted to the study of monomorphisms
in Clus. Section [5| concerns the study of products and coproducts in Clus and their connections
to the geometry of surfaces. Section [0]is devoted to the study of epimorphisms in Clus and gives
rise to a combinatorial process called surgery, whose interactions with the geometry of surfaces are
studied in Section

NOTATIONS

In this article, every ring A has an identity 14 and every ring homomorphism A— B is assumed
to send the identity 14 to the identity 15. We denote by Ring the category of rings with ring
homomorphisms.

If T is a countable set, we denote by M/(Z) the ring of locally finite matrices with integral
entries indexed by I x I (we recall that a matrix B = (b;;); jer is locally finite if for every i € I, the
families (b;;)jer and (bj;)jer have finite support). We say that B is skew-symmetrisable if there
exists a family of non-negative integers (d;);er such that d;b;; = —d;b;; for any ¢,j € I. If J C I,
we denote by B[J] = (b;;): jes the submatrix of B formed by the entries labelled by J x J.

If I and J are sets, we use the notation I'\ J = {i € I | i ¢ J} independently of whether J is
contained in I or not. By a countable set we mean a set of cardinality at most Ng.

If R is a subring of a ring S, and if 2" C S is a set, we denote by R[.Z"] the ring of all polynomials
with coefficients in R evaluated in the elements of S.

We recall that a concrete category is a category whose objects have underlying sets and whose
morphisms between objects induce maps between the corresponding sets.

In order to make some statements clearer, it might be convenient for the reader to use a com-
binatorial representation of the skew-symmetrisable locally finite matrices as valued quivers. If
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B € M;(Z) is a locally finite skew-symmetric matrix, we associate with B a valued quiver Qpg
whose points are indexed by I and such that for any 4,5 € I, if b;; > 0 (so that bj; < 0), then we
draw a valued arrow

. (bij,—bji)

i
in Qp. As B is skew-symmetrisable the valued quiver Qg has no oriented cycles of length at most
two. In the case where B is skew-symmetric, if 7, j € I are such that b;; > 0, we usually draw b;;
arrows from ¢ to j in @ p instead of a unique arrow with valuation (b;;, —b;;).

1. ROOTED CLUSTER ALGEBRAS

In this section we recall the definition of a cluster algebra of geometric type. As opposed to the
initial definition formulated in [FZ02|, we consider non-invertible coeflicients.

1.1. Seeds and mutations.

Definition 1.1 (Seeds). A seed is a triple ¥ = (x, ex, B) such that :

(1) x is a countable set of undeterminates over Z, called the cluster of ¥ ;

(2) ex C x is a subset of x whose elements are the exchangeable variables of 3 ;

(3) B = (bay)z,yex € Mx(Z) is a (locally finite) skew-symmetrisable matrix, called the ez-
change matriz of X.

The variables in x \ ex are the frozen variables of ¥.. A seed ¥ = (x, ex, B) is coefficient-free if
ex = x and in this case, we simply write ¥ = (x, B). A seed is finite if x is a finite set.
Given a seed X, the field %5, = Q(z | = € x) is called the associated ambient field.

Definition 1.2 (Mutation). Given a seed ¥ = (x,ex, B) and an exchangeable variable z € ex,
the image of the mutation of ¥ in the direction x is the seed

pe(X) = (x',ex', B)

given by
(1) x' = (x\ {z}) U {2’} where

o H yPov + H y by,

YEX ; YEX ;
bary >0 bary <O

(2) ex’ = (ex\ {z}) U{z'}.
(3) B' = (b,,) € Mx(Z) is given by

Yo — —by: ifr=yorax=z;
vz by + %(|bym|bzz + byz|bsz|)  otherwise.

For any y € x we denote by p, »(y) the variable corresponding to y in the cluster of the seed
pe(X), that is, py »(y) =y if y # = and py »(x) = 2’ where 2’ is defined as above. If there is no
risk of confusion, we simply write . (y) instead of p, »(y).

The set x’ is again a free generating set of .#x and the mutation is involutive in the sense that
fgr © g (X) = X, for each x € ex.

Definition 1.3 (Admissible sequence of variables). Let ¥ = (x,ex, B) be a seed. We say that
(x1,...,2;) is X-admissible if x; is exchangeable in ¥ and if, for every ¢ > 2, the variable x; is
exchangeable in iz, _, 00 iz (X).
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Given a seed ¥ = (x,ex, B), its mutation class is the set Mut (X) of all seeds which can be
obtained from ¥ by applying successive mutations along finite admissible sequences of variables.
In other words,

Mut (2) = {ptz,, © -+ 0 iz, (X) | » > 0 and (z1,...,x,) is L-admissible} .
Two seeds in the same mutation class are mutation-equivalent.
1.2. Rooted cluster algebras.

Definition 1.4 (Rooted cluster algebra). Let 3 be a seed. The rooted cluster algebra with initial
seed ¥ is the pair (X, &) where & is the Z-subalgebra of Fs given by :

o =d(X)=7Z |x|x€ U x| C Zx.
(x,ex,B)eMut (X)

The variables (exchangeable variables and frozen variables respectively) arising in the clusters of
seeds which are mutation-equivalent to 3 are the cluster variables (or the exchangeable variables
and frozen variables respectively) of the rooted cluster algebra (X, 7). We denote by 2% the set
of cluster variables in (¥, «7).

In order to simplify notations, a rooted cluster algebra (X, ) is in general simply denoted by
&/ (X) but one should keep in mind that a rooted cluster algebra is always viewed together with its
initial seed.

Remark 1.5. This definition authorises seeds whose clusters are empty. Such seeds are called
empty seeds and by convention the rooted cluster algebra corresponding to an empty seed is Z.

Example 1.6. If 3 = (x, (), B) has no exchangeable variables, then
(X)) =Zz | x € x]
is a polynomial ring in countably many variables.

Remark 1.7. In the original definition of cluster algebras given in [FZ02], the frozen variables
are supposed to be invertible in the cluster algebra. However, it is known that cluster variables
in a cluster algebra of geometric type are Laurent polynomials in the exchangeable variables with
polynomial coefficients in the frozen ones (see for instance [FZ03, Proposition 11.2]). Therefore,
the cluster algebra structure can essentially be considered without inverting the coefficients. Also,
several “‘natural” examples of cluster algebras arise with non-invertible coefficients, as for instance
cluster algebras arising in Lie theory as polynomial rings (see [GLS11), §6.4]) or cluster structures
on rings of homogeneous coordinates on Grassmannians (see [GSV10l §2.1] or Section [6.5]).

Of course, if one wants to recover the initial definition from ours, it is enough to localise the
cluster algebra at the frozen variables. Nevertheless, some of our results (in particular the crucial
Lemma require that frozen variables be non-invertible.

1.3. Rooted cluster algebras from surfaces. In this article, we are often interested in the
particular class of rooted cluster algebras associated with marked surfaces in the sense of [ESTOS].
We recall that a marked surface is a pair (S, M) where S is an oriented 2-dimensional Riemann
surface and M is a finite set of marked points in the closure of S such that each connected
component of the boundary 05 of the surface S contains at least one marked point in M. We also
assume that none of the connected components of (S, M) is a degenerate marked surface, that is,
a surface which is homeomorphic to one of the following surfaces :

e a sphere with one, two or three punctures,

e an unpunctured or a once-punctured monogon,

e an unpunctured digon or an unpunctured triangle.



ON A CATEGORY OF CLUSTER ALGEBRAS 5

All curves in (S, M) are considered up to isotopy with respect to the set M of marked points.
Therefore, two curves v and ' are called distinct if they are not isotopic. Two curves v and ~/
are called compatible if there exist representatives of their respective isotopy classes which do not
intersect in S\ M.

An arc is a curve joining two marked points in (S, M) which is compatible with itself. An arc
is a boundary arc if it is isotopic to a connected component of 9S \ M, otherwise it is internal.

A triangulation of (S, M) is a maximal collection of arcs which are pairwise distinct and com-
patible. The arcs of the triangulation cut the surface into triangles (which may be self-folded).

With any triangulation T of (S, M) we can associate a skew-symmetric matrix B as in [FSTOS].
For the convenience of the reader, we recall this construction in the case where T has no self-folded
triangles (for the general case we refer the reader to [FSTO8, §4]). For any triangle A in T, we
define a matrix B*, indexed by the arcs in T and given by

1 if v and +' are sides of A and +’ follows «y in the positive direction ;
B,ﬁ,y, =<¢ —1 if v and v are sides of A and ~' follows ~ in the negative direction ;
0 otherwise.

The matrix BT is then given by

B"=>"B%
A
where A runs over all the triangles in 7.

In terms of quivers, the quiver Q7 corresponding to BT is the quiver such that :

e the points in Q7 are the arcs of T,

e the frozen points in Q7 are the boundary arcs of T,

e there is an arrow y— +’ if and only if v and ~' are sides of a same triangle and ~’ follows
v in the positive direction,

e a maximal collection of 2-cycles is removed.

Example 1.8. Figure[I] shows an example of quiver obtained from a triangulation of a hexagon.
Points in white correspond to frozen variables and points in black correspond to exchangeable
variables. The dashed arrows, joining frozen points, are precisely those which we remove in the
simplification of the seed (see Definition .

FIGURE 1. The quiver of a triangulation of a hexagon.

Then, we can associate with 7" the seed ¥ = (x7, exp, Br) where :

e x7 is indexed by the arcs in T ;
e exr is indexed by the internal arcs in T ;
e BT is the matrix defined above.
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The rooted cluster algebra associated with the triangulation T is therefore &7 (Xr).

It is proved in [FSTO§| that if 7" and 7" are two triangulations of (S, M), then Yr and Xp
can be joined by a sequence of mutations. Therefore, up to a ring isomorphism, o7 (X7) does not
depend on the choice of the triangulation T" and is called the cluster algebra </ (S, M) associated
with (S, M), see [ESTO08] for further details.

More generally, it is possible to associate to a marked surface a cluster algebra with an arbitrary
choice of coefficients and not only the coefficients arising from the boundary arcs considered above.
However, for geometric statements (see for instance Sections or , it is usually more
natural to consider coefficients associated with the boundary arcs.

Finally, in order to avoid technicalities, we only consider untagged triangulations but all the
results we present can easily be extended to the case of tagged triangulations.

2. THE CATEGORY OF ROOTED CLUSTER ALGEBRAS
2.1. Rooted cluster morphisms.

Definition 2.1 (Biadmissible sequences). Let ¥ = (x,ex, B) and ¥’ = (x/,ex’, B’) be two seeds
and let f : $5— Fsv be a map. A sequence (x1,...,x,) C &(X) is called (f, X, X)-biadmissible
(or simply biadmissible if there is no risk of confusion) if it is ¥-admissible and if (f(x1),..., f(x,))
is ¥'-admissible.

We fix two seeds ¥ = (x,ex, B) and ¥’ = (x,ex’, B').

Definition 2.2  (Rooted cluster morphisms). A rooted cluster morphism  from
(X)) to «(¥) is a ring homomorphism from &/(X) to «/(X') such that
(CM1) f(x)C x'UZ:
(CM2) f(ex)Cex'UZ;
(CM3) For every (f,%,Y')-biadmissible sequence (1, ...,z,), we have

fBa, 00 pay s (¥)) = f@,) © 0 Bp),s (F ()
for any y in x.

We sometimes say that f commutes with biadmissible mutations if it satisfies (CM3).

Remark 2.3. A rooted cluster morphism may send a frozen cluster variable to an exchangeable
cluster variable whereas (CM2) prevents the opposite from happening.

Remark 2.4. Given an explicit ring homomorphism f between two rooted cluster algebras,
(CM3) is difficult to check since it requires to test every biadmissible sequence, and there are
in general infinitely many. However, we shall see that for instance for isomorphisms, it is some-
times possible to simplify this situation (see Lemma .

Proposition 2.5. The composition of rooted cluster morphisms is a rooted cluster morphism.

Proof. We fix three rooted cluster algebras @7, o/ and <73 with respective initial seeds %1, Y5 and
Y3 where ; = (x;, ex;, B%) and consider rooted cluster morphisms f : .24 — 2% and g : o— 3.
The composition g o f is a ring homomorphism from o7 to 7. Moreover, we have :

(CM1) (go f)(x1) =g(f(x1)) Cg(x2UZ) Cx3UZ;

(CM2) (go f)(ex1) =g(f(ex1)) C glexaUZ) CexsUZ;

(CM3) Let (z1,...,2z,) be a ((go f),21,X3)-biadmissible sequence. We claim that (x1,...,2,)
is (f, X1, X2)-biadmissible and that (f(x1),..., f(x,)) is (g, X2, X3)-biadmissible. Indeed,
since f satisfies (CM2), an exchangeable variable x € ex; is sent either to an exchange-
able variable in exs or to an integer. If f(z) € Z, because g is a ring homomorphism,
then g(f(z)) € Z and therefore (g o f)(z) is not exchangeable, a contradiction. Thus,
(1,...,2n) 18 (f, X1, Xo)-biadmissible. It follows that (f(z1),..., f(z,)) is Xa-admissible



ON A CATEGORY OF CLUSTER ALGEBRAS 7

and therefore, as (g(f(z1)),...,9(f(zn))) is X3-admissible, the sequence (f(z1),..., f(z,))
is (g, 32, X.3)-biadmissible.

Now, since f satisfies (CM3), for every i such that 1 <+4¢ < n and any = € x;, we have
and, since g satisfies (CM3), for any (g, 32, 33)-biadmissible sequence (y1,...,y,) and
any 7 such that 1 <i <n and y € x5, we have

Gty © 0 iy, (Y) = Lg(ys) © O Hg(yn) (9(Y))-
Then, as f(x1) C x2 UZ, we get

(90 f)(Ha; 0+ 0 pay (%)) = Bigoy(a) © @ Mgop) @) (90 F)(@))
for any x € x so that (g o f) satisfies (CM3).
Thus, go f : @4 — 3 is a rooted cluster morphism. O

Therefore, we can set the following definition :

Definition 2.6. The category of rooted cluster algebras is the category Clus defined by :

e The objects in Clus are the rooted cluster algebras ;
e The morphisms between two rooted cluster algebras are the rooted cluster morphisms.

Remark 2.7. One should observe the importance of the condition (CM2) in the proof of Proposi-
tion @ in order to obtain well-defined compositions of rooted cluster morphisms. If this condition
is removed from the definition of a rooted cluster morphism, one can easily construct examples of
rooted cluster morphisms whose composition is not a rooted cluster morphism.

For instance, consider 37 = (z,z,[0]), X2 = (z,0,[0]) and X3 = <(a:,y),(:1:,y), { _(1) (1) ])
Let f denote the identity in Q(z) and let g denote the canonical inclusion of Q(z) in Q(z,y).
By construction f and g satisfy (CM1) and not (CM2). Since there are neither non-empty
(f, 31, 32)-biadmissible sequences nor non-empty (g, X2, X3)-biadmissible sequences, f and g sat-
isfy (CM3). The composition g o f also satisfies (CM1) and (z) is (g o f, 31, X3)-biadmissible.
However,

(90 F)a(a)) = % L1ty

Therefore, g o f does not satisfy (CM3).

= :u(gof)(w)((g o f)(l‘))

2.2. Ideal rooted cluster morphisms.
Definition 2.8 (Image seed). Let f : &7 (X)— &7 (¥’) be a rooted cluster morphism. The image
seed of ¥ under f is

f(Z) = (x' N f(x),ex' N f(ex), B'[f(x))).
Lemma 2.9. Let f : o/ (X)— /(') be a rooted cluster morphism and let (y1,...,y1) be an
f(X)-admissible sequence. Then (y1,...,y) is X'-admissible and

Py © ==y 12y (Y1) =y, © - phyy s (Y1)

Proof. Let ¥ = (x,ex,B) and ¥/ = (x/,ex/, B’). Because p,, (B'[f(x)]) = B'[py, (f(x))], it is
enough to prove the statement for [ = 1 and to proceed by induction. By definition, exchangeable
variables in f(X) are exchangeable in ¥/. Now, if y; is f(X)-admissible, we have

1 , -
thy,, () (Y1) = ; H 2Pz H 50y,

’ ’
by, >0 by, <O

zex'Nf(x) zexX'Nf(x)



8 IBRAHIM ASSEM, GREGOIRE DUPONT AND RALF SCHIFFLER
Because y; is exchangeable in f(X), there exists some z1 € ex such that y; = f(x1) and we have

Mwl,Z(xl) = i H ub“ml + H u_b'u,.'l:l

I b
ux] >O bua‘,l <0
UEX uex

Therefore, since f satisfies (CM3), we get

1

fy sz () = flpay w(@1)) = — | [ f@=+ ] flu)=beo
Y1\ >0 buzy <O
uUEX ueEX

And by definition

1 / Y
fhys s (Y1) = — H 2o 4 H 2P

h by, >0 by, <O
zex’ zex’
Therefore, 0, =0 for any z € X"\ f(x) so that p,, s/(y1) = fiy,, r(=)(y1)- O

Lemma 2.10. Let [ : &/ (X)— o/ (¥') be a rooted cluster morphism. Then o/ (f(X)) C f(<(X)).

Proof. Let ¥ = (x,ex,B) and ¥’ = (x/,ex’, B’). We have to prove that any cluster variable in
2 (f(X)) belongs to f(«/(X)). Fix an arbitrary cluster variable y € o/ (f(X)), then there exists an
f(3)-admissible sequence (y1,...,y;) such that y = py, 0 -0 py, (y1).

We claim that any f(3)-admissible sequence (yi,...,y;) lifts to an (f, 3, f(32))-biadmissible
sequence (z1,...,x;). If I =1, then y; = f(z1) for some z; € ex and thus (z1) is biadmissible.
Assume now that for k& < [ the sequence (y1,...,yx) lifts to a biadmissible sequence (z1,...,zk).
Then yg4+1 is exchangeable in py, o --- o u,, (f(X)) and thus there exists some = € ex such that
Ykt+1 = by O - - O ly, (f(2)). Because f satisfies (CM3), we get

Yr+1 = f(lu’lk OO M,y (Z‘))
Therefore, Tx11 = piz, 0 -0 iz, () is exchangeable in p;, 0«0 pg, () and (y1,. .., yr4+1) lifts to

(21,...,2k+1). The claim follows by induction.
If | = 0, then by definition of f(X), the elements in the cluster of f(X) belong to f(«7/(X)). If

[ >0, then it follows from the claim that (yi,...,y;) lifts to an (f, 3, f(X))-biadmissible sequence
(z1,...,2;) in &7 (X). Moreover, we have
Y= Hy © 0 fhyy f(5) (Y1)

= ff(e) O O Bp(a), £ (f(21))

= [f () © O Mf(an)s (f(21))

= fpz, 0+ 0 pay x(21)) € f(A (X))
where the third equality follows from Lemma [2.9] and the last one from the fact that f satisfies
(CM3). O

Definition 2.11 (Ideal rooted cluster morphism). A rooted cluster morphism f : &/ (3)— o/ (¥')
is called ideal if &7 (f(X)) = f((X)).

We shall meet along the article several natural classes of rooted cluster morphisms which are
ideal (see for instance Corollary or Proposition . However, we do not know whether or not
every rooted cluster morphism is ideal. We may thus state the following problem :

Problem 2.12. Characterise the rooted cluster morphisms which are ideal.
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Example 2.13. Consider the seeds

0 1 0 0 1 0
Y= (.’L‘l,.’ﬂ27l'3)7 (xQ)v -1 01 and E/ = (y17y27y3)7 (y17y27y3)7 -1 0 1
0 -1 0 0 -1 0
and the ring homomorphism
522 — yg/
. Tq — 1
I Tz =y

r3 = Y2

The only (f, 3, ¥')-biadmissible sequence to consider is (z2) and

fpay (22)) = f (351 +x3> _ 14y

€2 Y1

so that f is a rooted cluster morphism &7 (X)— o7 (X’). Moreover we have

1© = (.| 3 5 ])-

T +.’173]

= iy, (Y1) = fp(an) (f(22))

Therefore

1+ yo

"3{(2) = Z[$1,$271‘3, o and 'Q{(f<z)) = Z[y1,y2> ]

so that &7 (f(X)) = f(& (X)) and therefore f is ideal.

Definition 2.14 (Rooted cluster ideal). A (ring theoretic) ideal I in a rooted cluster algebra
/(X)) is called a rooted cluster ideal if the quotient o/ (X)/I can be endowed with a structure of
rooted cluster algebra such that the canonical projection is a rooted cluster morphism.

Proposition 2.15. Let f : o/ (X)— <7 (X') be an ideal rooted cluster morphism. Then Ker(f) is
a rooted cluster ideal.

Proof. Let f : o/ (¥)— </(X') be an ideal rooted cluster morphism. Then f induces a ring
isomorphism
A (3)/Ker(f) = f( (%)) = & (f(2))
endowing &7 (X)/Ker(f) with a structure of rooted cluster algebra with initial seed f(X).
Moreover, since f is a rooted cluster morphism, the morphism f : & (X)— &7 (f(¥)) induced
by f is also a rooted cluster morphism and therefore &7 (¥)— &7 (X)/Ker(f) is a rooted cluster
morphism. O

3. ROOTED CLUSTER ISOMORPHISMS

In this section we characterise isomorphisms in Clus which we call rooted cluster isomorphisms.
These results are generalisations of those obtained in [ASS1I] for coefficient-free skew-symmetric
cluster algebras. We recall that an ¢somorphism in Clus is an invertible morphism.

We start with a general lemma on surjective morphisms :

Lemma 3.1. Let ¥ = (x1,ex;, B') and ¥y = (X2, exa, B?) be two seeds and f : o (X1)— o (X2)
be a surjective ring homomorphism satisfying (CM1). Then x5 C f(x1) and exy C f(exy).

Proof. Let z € x5. Since f is surjective, there exists y € «7(X1) such that f(y) = z. According
to the Laurent phenomenon, there exists a Laurent polynomial L such that y = L(z|z € x;).
Therefore, z = f(y) = L(f(z)|z € x1). Since f satisfies (CM1), we know that f(x1) C xa UZ. If
z & f(x1), since Xg is a transcendence basis of Fy,,, we get a contradiction. Therefore, z € f(x1)
and thus xa C f(x1).
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Fix now z € exs. According to the above discussion, we know that f~1(z) Nx; # . Since
f is surjective, there exists X € &/(X;) such that f(X) = p.x,(2). Now we know that X €
Z[x1 \ exi][exi!]. Therefore, if f~1(z)Nex; = 0, then f~1(2)Nx; C (x;\ex;) and therefore, X is
a sum of Laurent monomials with non-negative partial degree with respect to any t € f~1(2) Nx;.
Therefore, f(X) is a sum of Laurent monomials with non-negative partial degree with respect to
z, a contradiction since p, x, (2) = f(X) is the sum of two Laurent monomials with partial degree
-1 with respect to z. Therefore f~1(z) Nex; # () so that exy C f(exy). O

Corollary 3.2. Let 3; = (x;,ex;, BY) be a seed for i € {1,2} and let f : o/ (31)— o/ (32) be
a bijective ring homomorphism satisfying (CM1). Then f induces a bijection from x1 to xo. If
moreover [ satisfies (CM2), then f induces a bijection from ex; to exs.

Proof. Since f is injective and satisfies (CM1), it induces an injection x;— Xg. Since f is also
surjective, it follows from Lemma that xo C f(x1) and exs C f(exz). Therefore, f induces a
bijection from x; to xg. If moreover f satisfies (CM2), then f induces an injection from ex; to
exs and thus it induces a bijection from ex; to exs. O

Definition 3.3 (Isomorphic seeds). Two seeds ¥ = (x1,ex;, B') and ¥y = (x2, exa, B?) are called
1somorphic if there exists a bijection ¢ : x;—> x5 inducing a bijection ¢ : ex;— exy and such
that bi(m) sly) = bi,y for every z,y € x;. We then write ¥; ~ ¥y and B! ~ B2

Definition 3.4 (Opposite seed). Given a seed ¥ = (x, ex, B), the opposite seed is

Y = (x,ex, —B).
Definition 3.5 (Simplification of a seed). Given a seed ¥ = (x, ex, B), we set B = (byy)z yex €
M« (Z) where

5 0 ifz,yex)\ex
T by otherwise.

The simplification of the seed ¥ is defined as ¥ = (x, ex, B).

Remark 3.6. In terms of valued quivers, simplifying the seed simply corresponds to removing all
the arrows between the frozen points. An example is shown in Figure [I] where the arrows between
frozen points are shown dashed.

Definition 3.7 (Locally rooted cluster morphism). Let ¥; = (x1,ex;,B!) and
Y5 = (x2,ex2,B%) be two seeds. A ring homomorphism f from &/ (3;) to
o/ (Xo) is called a locally rooted cluster morphism if it satisfies (CM1), (CM2) and
(CM3loc): for any = € ex; and any y € x1, we have, f(ue,x, (¥) = i)z, (f(Y))-

As we now prove, for bijective ring homomorphisms, it is possible to simplify considerably the
condition (CMS3) (compare [ASS11], Proposition 2.4]).

Lemma 3.8. Let X1 and X be two seeds and let f : of (X1)— o/ (32) be a bijective locally rooted
cluster morphism. Then :
(1) f is a rooted cluster morphism ;

(2) X1 =3y or Xy =~ (Xp)°P.

Proof. For i € {1,2}, we set ¥; = (x;,ex;, BY). Let f be as in the hypothesis. It follows from
Corollary [3:2] that f induces bijections from x; to x3 and from ex; to exs.
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For every = € ex;, we have

1 1 !

Flpa(@)) = f | —| IT "+ [T ="
z ZEX] ; zZEX1
bl >0 bl_ <0

=7 | IT s+ T s

ZEX1 zZEX1
b, >0 bl,<0

Because f satisfies (CM3loc), we have
flpa(2)) = pp(a) (f(2))

1 b2 —b2
= — f(z) F@) (=) f(z) F@)f(2)
| I I
] 2 ‘g(Z)ze H
bt @) r(2)>0 i@y r( <0
and because x, is algebraically independent, we get bl = b? F(2)£(2) for any = € ex; and any z € x3

orbl, = b2( )f(») for any x € ex; and any z € x3, that is, B! ~ B2 or Bl ~ (—B2). Therefore,
271 ~ EQ or 21 ~ (EQ)OP. L L

Since the mutations in &/ (X1) and <7 (X3) are entirely encoded in the simplifications ¥; and ¥
of the exchange matrices, it follows easily that f is a rooted cluster morphism. O

Theorem 3.9. Let o/ (%) and o/ (33) be two rooted cluster algebras. Then o/ (1) and o/ (X3)
are isomorphic in Clus if and only if 1 ~ Sa or oy ~ Ty .

Proof. As Clus is a concrete category, an isomorphism f : &7 (X1)— o7 (32) is necessarily bijective.
Therefore, Corollary and Lemma imply that f induces a bijection x; = X5 such that

B! ~ B2 or B! ~ (B?)°P. Moreover it also follows from Corollary [3.2 that f is a bijection

ex; — exsy so that it induces an ISOmOI“phlbm of seeds Xy ~ 3g or Xy ~ DI

Conversely, if 3; ~ 3y or 7 ~ 22 , we consider the bijection ¢ : x;—> X9 inducing the
isomorphism of seeds. It thus induces naturally a ring isomorphism f, : %5, — %y, and it is
easily seen that f, is a rooted cluster isomorphism. ]

Corollary 3.10. The isomorphisms in Clus coincide with the bijective rooted cluster morphisms.

Proof. As Clus is a concrete category, isomorphisms are bijective. Conversely, if we consider a
bijective rooted cluster morphism &7 (¥%;)— % (22), then it follows from Lemma[3.8|that f induces
an isomorphism of seeds £; ~ 3y or L1 ~ 22 so that f is an isomorphism in Clus. O

Corollary 3.11. Let o7/ (X1) and 27 (X2) be two rooted cluster algebras and let f : of (31)— o/ (X2)
be a rooted cluster isomorphism. Then the following hold :

(1) any X1-admissible sequence is (f, %1, Xo)-biadmissible ;

(2) any Xo-admissible sequence lifts to a unique (f, X1, X2)-biadmissible sequence ;

(3) f(‘%&h) = %22' O

Remark 3.12. For non-bijective morphisms, one can find locally rooted cluster morphisms which
are not rooted cluster morphisms. For instance, let ¥; = (x1,ex;, B!) and ¥y = (x2, exy, B?)
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where
ex; =X = {x17$27l‘3}’ €eXo = Xo = {Ul,UQ},
0 1 0
B'=| -1 0 -1 andez{g (1)]
0 1 0

and consider the ring homomorphism
Q(z1,22,73) —>  Q(u1,u2)
! 1,3 — U1
T2 — Ug.

Then
s (1)) = ) = 7 (2522 ) = 2222 )
and . . )
(o)) = (102 ) LI )

so that m commutes with biadmissible sequences of length one.

However 1
+z1x
[ig, (x1) = {xl,xg 13,x3}
( ) 1+$2+l‘1$3 oz
My ,Uacz T1Z2 e
and
l+zy+xixg3 1420
(i © flay © Hay )( ’ e
T1T2 T1
but
1+ u?
Mu2(X2) = {UI,Ué = 1}
U2
14 up +u}
(s © o) (3c2) = {u
and
1+ug +ud 14 2up +uj +u?
(,U/u/2 O My, © Mu2)(x2) = { U1U2 ' U%U’Q .
so that

7T<1+x2> _ 14+ uy y 1+ 2ug + ud + u?

uy U%UQ

1

and thus 7 is not a rooted cluster morphism between the cluster algebras &7 (2;) and o7 (Z3).
Note that the morphism 7 is induced by the folding of the quiver Qg1 :1<=—2—>3
with respect to the automorphism group exchanging 1 and 3. For general results concerning the

interactions of foldings with cluster algebras, we refer the reader for instance to [DemlI].

Remark 3.13. a) Two rooted cluster algebras associated with mutation-equivalent seeds are
not necessarily isomorphic in the category Clus since mutation-equivalent seeds are in
general neither isomorphic nor opposite.

b) The cluster automorphisms considered in [ASS1I| correspond in our context to rooted
cluster isomorphisms from &7 (%) to itself when ¥ is finite, skew-symmetric and coefficient-
free. The groups of cluster automorphisms have been computed for seeds associated with
Dynkin or affine quivers, see [ASS11] §3.3].

¢) A strong isomorphism &7 (%;)— &/ (22) in the sense of [FZ03] is a rooted cluster isomor-
phism such that £; ~ ¥s.
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4. ROOTED CLUSTER MONOMORPHISMS

We recall that a monomorphism in a category is a morphism f such that if there exist morphisms
g and h satisfying fg = fh, then g = h.

Lemma 4.1. Let ¥ = (x,ex,B) be a seed, let y C x and let © = (y,0,C) be another seed.
Then the canonical ring homomorphism Fo— Fs induces an injective rooted cluster morphism

A (0)— o (5).

Proof. The canonical ring homomorphism Fg— Sy sends x to x for any x € y therefore, it
satisfies (CM1) and (CM2). Moreover, since there are no exchangeable variables in O, it au-
tomatically satisfies (CM3). We thus only have to prove that it induces a ring homomorphism
o (0)— &7 (X), and this is clear because &7 (0) =Z[z | z € y] C Zlx | x € x] C H (). O

Remark 4.2. In order for Lemma[f.1] to hold, it is necessary to consider non-invertible coefficients
because if the image of a frozen variable is exchangeable then the image of its inverse would have
to be the inverse of the exchangeable variable, which is not in the cluster algebra.

Proposition 4.3. Monomorphisms in Clus coincide with injective rooted cluster morphisms.

Proof. Let ¥; = (x;,ex;, BY) be seeds for 1 <14 < 3 and consider rooted cluster morphisms
g f

Since Clus is a concrete category, every injective morphism in Clus is a monomorphism. We thus
only need to prove the converse.

Let f be a non-injective rooted cluster morphism. Because it satisfies (CM1), we get f(x2) C
x3 U Z. If f(xg) C x3 and if the restriction of f to xo is injective, f sends a transcendence basis
of Fx, to an algebraically independent family in %5, and therefore, it induces an injective ring
homomorphism %y, — Fy, so that it is itself injective, a contradiction. Thus, there are two cases
to consider :

e there exists © € x2 such that f(z) € Z,
e there exist o,y € X2 such that z # y and f(x) = f(y).

In the first case, it follows from Lemma [{.1] that we can consider the rooted cluster morphisms
h,g: Zlx]— o7 (X2) given by g(z) = x and h(z) = f(x) € Z. Then fh(z) = fg(x) = f(x) so that
fh= fgbut f#g. Thus f is not a monomorphism in Clus.

In the second case, it also follows from Lemma that we can consider the rooted cluster
morphisms h, g : Z[z,y]— 27 (X2) given by g(x) = h(y) = x and g(y) = h(z) = y. Thus, fg = fh
but g # h and therefore f is not a monomorphism in Clus. O

As a consequence, the study of monomorphisms in Clus restricts to the study of injective rooted
cluster morphisms.

Lemma 4.4. Let ¥ = (x1,ex1,B1) and Yo = (x2,exz, B%) be two seeds and let f
A (X1)— o/ (X3) be an injective rooted cluster morphism. Then f induces an isomorphism of
seeds X1 ~ f(X1) or 1 ~ (f(31))°P.

Proof. As f is injective and satisfies (CM1), we have f(x1) C x2 and since it satisfies (CM2),
we have f(ex;) = ex2 N f(x1). Let & € ex;. Since f satisfies (CM3), we have f(uzx, (2)) =
Hf(2),z. (f(2)) so that

[T @+ I1 s = I 2o+ I 2 fer

yEX1, YEX1, ZEX2, ZEX2,
1 1 2 2
bxy>0 bzy<0 bf(x>z>0 bf(w>z<0
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Therefore, b?(w)z =0 for any z ¢ f(x1) and either bfc(w)z = b}, for any y € x; such that f(y) = z
or b?(z)z = fbiy for any y € x; such that f(y) = z, which proves the lemma. a

Corollary 4.5. Any injective rooted cluster morphism is ideal.

Proof. Let ¥ = (x,ex,B) and ¥/ = (x/,ex’, B’) be two seeds and let f : &(X)— &/(X’) be an
injective rooted cluster morphism. As a cluster algebra does only depend on the simplification
of the seed, we can assume that both ¥ = ¥ and ¥/ = ¥’. According to Lemma f induces
an isomorphism of seeds ¥ ~ f(X) or ¥ ~ f(X). It follows that every X-admissible sequence is
(f, %, ¥")-biadmissible.

In order to prove that f is ideal, it is enough to prove that for any cluster variable z in &7 (%),
the variable f(x) is an element in &7 (f(X)). Let thus z be a cluster variable in <7 (X). Then either
z is a frozen variable in ¥ and thus f(z) is a frozen variable in f(X) and we are done, or there
exists a X-admissible sequence (z1, ..., ;) such that z = p, 0 -+ 0 puy, () for some = € ex. Then
(z1,...,2) is (f, X, X)-biadmissible and because f satisfies (CM3), we get

f(2) = flpay 0+ 0 pay 2(T)) = ppay) © -+ 0 fp(ay), s (f(2))
but it follows from Lemma [2.9] that
[ (a) © 0 ey, (f(2) = By © 0 (e, r) (f(2)-

Therefore, f(z) is a cluster variable in &/ (f(X)) and thus f(«7 (X)) C &/(f(X)). The reverse
inclusion follows from Lemma [2.10] and therefore f is ideal. O

As a byproduct of the proof of Corollary [.5] we obtain :

Corollary 4.6. Let X1,%s be two seeds and f : o (51)— o/ (32) be an injective rooted cluster
morphism. Then :

(1) any X1-admissible sequence is (f, %1, X2)-biadmissible,
(2) f(Zx,) C Zs,. O

We recall that a seed ¥ = (x,ex, B) is called :

e of finite cluster type if Z% is finite,

e acyclic if the valued quiver obtained by deleting the arrows between frozen vertices in Qg
has no oriented cycles,

e mutation-finite if the mutation class of the exchange matrix of B is finite.

Corollary 4.7. Let ¥1,%5 be two seeds and f : o/ (X1)— o/ (X2) be an injective rooted cluster
morphism. Then :

(1) If 3o is of finite cluster type, then so is Xy ;

(2) If 3o is acyclic, then so is ¥y ;

(3) If Xo is mutation-finite, then so is X1.

Proof. The first assertion is a consequence of Corollary The second assertion follows from
Lemma and from the fact that a subquiver of an acyclic (valued) quiver is acyclic. The third
assertion follows from Lemma [£4] and from the fact that a full subquiver of a mutation-finite
(valued) quiver is mutation-finite. O

4.1. Monomorphisms arising from triangulations of the n-gon. For any integer m > 3, we
denote by II,, the m-gon whose points are labelled cyclically from 1 to m. For m > 4, the cluster
algebra o7 (I1,,,) (with coefficients associated with boundary arcs) is a cluster algebra of type A,,_3.

We construct by induction a family {7},},,~5 where each T), is a fan triangulation of II,,,. We
start with the triangle IT3 whose points are denoted by 1,2 and 3. For any m > 3, the triangulation
Tnt1 of 1,41 is obtained by gluing a triangle along the boundary arc joining m to 1 in 7T,,, and
the new marked point introduced by this triangle is labelled by m+ 1, as shown in the figure below.
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2 2 2 2

1A3 1 3 1 3 1 3

4 4 6 4

ot
w

Ty Ty Ts Tg

For any m > 4, we denote by 3, the seed associated with T,, in </ (IL,,). Cluster variables
in &/ (II,;,) are identified with the arcs joining two marked points in II,, and for any ¢ and j such
that 1 < ¢ < j < m, we denote by x;; the variable corresponding to the arc joining i to j.
The exchangeable variables are thus the variables corresponding to internal arcs. The exchange
relations given by the mutations in &7 (I1,,) are the so-called Plicker relations :

TijTpl = TikTj + Taxp; for 1 <i<j<k <l <m.

For any m' > m, the inclusion of T, in T, defines a natural ring monomorphism j, m :
Iy, — Fx_,. Since arcs (or internal arcs) in 7}, are sent to arcs (or internal arcs, respec-
tively) in T, then j,, ,s satisfies (CM1) and (CM2). Moreover, since exchange relations in
o/ (I,;,) and 7 (IL,,/) correspond to Pliicker relations in I, and II,,  respectively, it is easily seen
that j,.m satisfies (CM3). Finally, since every admissible sequence of variables in 7 (Il,,) is
(Jm.m?» Bms S )-biadmissible, it follows from the fact that j,, . preserves the Pliicker relations
that it commutes with biadmissible mutations and that j,, /(< (IL,,)) C &/ (IL,,/).

Therefore, for m < m’, we have exhibited an injective rooted cluster morphism

jm,m’ : JZ%(Hm)—> JZ{(H,,L/).

Example 4.8. Consider the cluster algebra <7 (I14) whose cluster variables are shown on the square
below.

1 12 2
1,3
1,4 2,3
2,4
4 3,4 3

Then
o (Iy) = Zwi; | 1 <i < j < 4)/(x13024 = T12034 + T14723).
Now consider the cluster algebra o7 (Il5). It has 4 additional cluster variables, two are exchange-
able and two are frozen. We show these new variables on the picture below.

1 2

Then
o (Il5) = Z[xij [1<i<j< 5]/(xija:kl =TT+ Tyx for 1 <i<j <k << 5).
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In particular, the canonical morphism ju5: Q(z;; |1 <i<j<4)—Q(z;; |1 <i<j<5)in-
duces an injective ring homomorphism 7 (I14)— o7 (Il5) which is a rooted cluster monomorphism
427(211)—) JZ%(ETS)

Definition 4.9 (Full subseed of a seed). Given a seed ¥ = (x,ex, B) where x = (z;,7 € I) and
given a subset J C I, we set ¥ ; the seed with cluster x| ; = (z;,i € J), with exchangeable variables
ex|; = ex N x|y and exchange matrix B[J]. Such a seed is called a full subseed of X.

Remark 4.10. If ¥/ is a full subseed of X, the canonical morphism .#s, — %5, does not necessarily
induce an injective rooted cluster morphism &7 (¥')— &7 (X). For instance, if %,, denotes the
coefficient-free seed associated with the quiver

Qm:1—2— ---—m

for any m > 1, then the canonical inclusion ¢ : %y, — does not induce a rooted cluster

m m+1
morphism &7 (%,,)— &/ (X,,+1) because

1+ xp— Tm—1+2
2 (/“Lwnuz'm ('/Em)) =1t ( - 1) # ml mtl = /“Lwnuz'm+1 (xm)
Tm Tm

We now describe a combinatorial operation on seeds which allows one to construct a class of
injective rooted cluster morphisms.

4.2. Amalgamated sum of seeds. Let ¥; = (x1,ex;, B!) and 3y = (x2, ex2, B?) be two seeds
and &7 (¥1), &/ (32) be the corresponding rooted cluster algebras.

Let A' C (x; \ ex;) and A? C (x2 \ exz2) be two (possibly empty) subsets such that there is an
isomorphism of seeds ¥1ja, =~ ¥ga,. In this case, we say that ¥; and ¥y are glueable along Ay
and As.

Let A be a family of undeterminates in bijection with A; and Ay. We set

X1 H X9 = (Xl\Al)U(XQ\AQ)uA.
A1,Az
As A and A, consist of frozen variables, ex; and exy are naturally identified with two disjoint
subsets of x; ]_[Al‘A2 X9 and we set
ex; H exy = ex L exs.
A1,Az
With respect to the partitions x; = (x; \ A;) U A, for any i € {1,2} the matrix B® can be
written : _ _
Bi — Bil Bi,
B%, | Ba

where the matrices are possibly infinite.

We then set
Bii| 0 | Bl
B' [[ B>=| 0 | B} |Bh
Ay,An 3211 B%Q Ba

Definition 4.11 (Amalgamated sum of seeds). With the above notations, the amalgamated sum
of & (X1) and o (32) along A1, As is the rooted cluster algebra &7 (X) where ¥ = (x, ex, B) with :

(1) x=x1]]a, a,%2:

(2) ex =ex; HAl,AQ ex, ;
(3) B=B'11,, x, B*
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We use the notations

=% [] Seand #(2) = (%)) [[ #(S2).
Al,AQ AI)AZ

Remark 4.12. In terms of valued quivers, the amalgamated sum of exchange matrices corre-
sponds to the amalgamated sum of valued quivers. For instance, the following figure shows an
example of amalgamated sum over the subquivers in the shaded area where points corresponding
to exchangeable (or frozen) variables are black (or white, respectively).

.\o/. [ [
/ / /

o A o A o A
\ \ \

@)

o o o
m i
oO— e O— e

QB Qp QBI1, B’

Lemma 4.13. Let X1 and X5 be two seeds which are glueable along subsets A1 and As as above
and let ¥ = Y1 [[a, A, X2- Then for any i such that i € {1,2}, the morphism Fs, — Fx induced
by the inclusion induces an injective rooted cluster morphism o (X;)— o/ (X).

Proof. By construction of ¥, the canonical morphism j; : %y, — Fx is injective and satisfies
(CM1) and (CM2). We now prove by induction on [ that any 3;-admissible sequence of length
lis (j1, 21, X)-biadmissible and that j; commutes with mutations along biadmissible sequences of
length .

Let © € ex;. Then j1(x) = z € ex so that (x) is (j1, 1, X)-biadmissible and therefore mutating

in 3 gives
1 1
() = I | ybeu + I | ybey

YEX] ; YEX1 ;
by, >0 by, <0

zy Ty

and, since b, = 0 for any z € (x1 \ A) D ex; and any y € x3 \ A, mutating in 3 gives

Hex(x) = H ybev 4 H y ey

YEX ; YEX
by >0 bay <0
ye(x1\A1)UA ; ye(x1\A1)UA ;
by >0 by <0
1 1
YEX ; YEX1 ;
1 1
by, >0 b, <0
= J1(Ha,3 (2))

and thus j; is a locally rooted cluster morphism.
Assume now that we proved the claim for any k < [ and let £ = p, o--- 0 ., (X) and

Egk) = Uz, O -0 iz, (1). We denote by B*) = (bgﬁ)) (or BL(F) = (bglg’y(k))) the exchange matrix of
»(*) (or ng), respectively). By the induction hypothesis, the cluster x(*) of £(¥) is ng)u(XQ\A)uA
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where ng) U Ay is the cluster of Egk). Then an easy induction proves that

b 0 ifxex(lk) and y € x2 \ A
i bi’y(l) ifzr,z¢e ng:) UA.

Because j; commutes with sequences of biadmissible mutations of length k, any variable zj4q
exchangeable in ng) is also exchangeable in ©(*) and a similar calculation proves that for any such
exchangeable variable x1, the morphism j; commutes with pz,,, o0 g, . O

Remark 4.14. If A; and Ay do not consist of frozen variables, then the canonical morphism
Fs,— Fx, may not satisfy (CM3). Indeed, if one considers the seeds

9, = ((x17x2)7(9517$2)’ { —(1) (1) D

0 1
5, = (<x2,x3>,<x3>, { ol D
so that
0 0 1
r=5% HEQZ (@1, 23, x2), (T1, 23, T2), 0 0 -1
Z2,T2 -1 1 0

Then mutating along x5 in 31 gives 1';% whereas mutating along x2 in X gives % Therefore,
the canonical morphism .#x, — %5 does not satisfy (CM3).

If ) = (x1,exy, BY) and ¥y = (x2,exa, B?) are glueable along A, Ay and if we denote by A
the common image of A; and Az in X =34 [J5, A, ¥2 = (X,ex, B), then the compositions of the
canonical ring homomorphisms

induce Z[A]-algebra structures on &/ (31) and &7 (%3). Also the inclusion Z[A] C &/(2) induces a
Z[Al-algebra structure on 27 (X). Then we have the following proposition :

Proposition 4.15. The canonical ring isomorphism Q(x) — Q(x1) ®q(a) Q(x2) induces an
isomorphism of Z|Al-algebras :

o | 5 H Yo | = A (X1) @zia) H(B2)-
A1,Az

5. COPRODUCTS, PRODUCTS AND AMALGAMATED SUMS
5.1. Coproducts of rooted cluster algebras.
Lemma 5.1. The category Clus admits countable coproducts.
Proof. Let I be a countable set and let {27 (%;)}

For any i € I, we set X! = (x;, ex;, B%) and

S =]]%i = (x,ex,B)
i€l

x:|_|xi, ex = |_|ex1-,

i€l el

;c1 be a countable family of rooted cluster algebras.

where
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and B is the block-diagonal matrix whose blocks are indexed by I and such that for any i € I,
the i-th diagonal block is B?. Then B is locally finite and thus X is a well-defined seed. For any
i € I, we denote by j; the canonical inclusion #s, — F#x, which clearly induces a rooted cluster
morphism &7 (%;)— o7/ (X2).

Now assume that there exists a rooted cluster algebra 7 (0) and for any i € I a rooted cluster
morphism g; : & (3;)— &/ (0). In order to prove that <7 (%) is the coproduct of the &7 (3;) with
i € I, we need to prove that there exists a unique rooted cluster morphism h : & (3)— &7 (0)
such that h o j; = g; for any ¢ € I. It is easily seen that such a rooted cluster morphism h exists
if and only if there exists a ring homomorphism h : %y— Fg satisfying h(z) = g;(x) for any
1 € I. This latter condition defines precisely one ring homomorphism h : .%x,— .%o and therefore,
h exists and is unique. O

Corollary 5.2. The full subcategory of Clus formed by rooted cluster algebras associated with
finite seeds has finite coproducts.

Remark 5.3. Topologically, this can be interpreted by saying that if (S, M) is a marked surface,
with connected components Si,...,S, and with M; = M N S; for any 1 < i < n, then &/ (S, M)
is the coproduct of the &7 (S;, M;) in Clus. Indeed, for any 1 < i < n, let T; be a triangulation
of (S;,M;). Then T' = ||, T; is a triangulation of (S, M) and it follows immediately from the
definitions that X7 =[]}, 7, so that &7 (Z7) = [, & (7).

5.2. Products of rooted cluster algebras.
Proposition 5.4. Clus does not generally admit products.

Proof. The proof consists of the construction of an example of two rooted cluster algebras whose
product is not defined in Clus. We consider the rooted cluster algebras associated with the seeds
Y1 = ((t1),0,[0]) and X1 = ((t2),0,]0]), so that &7 (21) = Z[t1] and &7 (X2) = Z[ts]. Assume that
there exists a product in Clus

Z[t] Zts].
with ¥ = (x,ex, B). For any i € {1, 2}, the morphism p; is a rooted cluster morphism so that
pi(x) C {t;} UZ and p;(ex) C Z.

Consider the seed ' = ((z),0,[0]) and for any ¢ € {1,2}, let f; : Z[z]— Z[t;] be the ring
homomorphism sending x to ;. Then f; is a rooted cluster morphism o7 (X') = Z[z]— «/ (%) for
any ¢ € {1,2}.

By definition of the product, there exists a unique rooted cluster morphism h : & (¥')— &/ (%)
such that the following diagram commutes:

()

|

f1 JZ/(Z) f2

Z[t) Zlt].

In particular, for any i € {1, 2}, there exists z; € x such that p;(x;) = t;.
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Now consider the seed ¥’ = ((v1,v2),0,[0]) so that &7 (X') = Z[vy,vs]. For any i € {1,2},
let f; : o/ (¥')— o/(%;) be defined by fi;(v;) = d;;t; where d;; is the Kronecker symbol. Then
each f; is a rooted cluster morphism. Again by definition of product, there exists a unique rooted
cluster morphism h : &7 (¥')— &/(X) such that the above diagram commutes. Since h satisfies
(CM1), for any i € {1,2}, we have h(v;) = z; for some z; € x such that p;(x;) = pi(z}) = t,.
If z;,2; € x are such that p;(z;) = t;, then the morphism given by h(v;) = h(x}) induces a
rooted cluster morphism o7 (X')— 7 (¥) and by uniqueness, h = h’ and thus x; = x}. Also, as
(p1oh)(vy) =t and (p1 o h)(ve) = 0, we have h(vy) # h(ve). Therefore, we obtained exactly
two elements h(v1) = x1 and h(ve) = x2 in x such that py(z1) = 1, p2(x1) = 0, p1(z2) = 0 and
pa(x2) = to and these elements are distinct.

Now consider again the seed ¥/ = ((x), 0, [0]) and f; : Z[z]— Z[t;] the morphism sending x to
t; for any i € {1,2}. Let h be the unique morphism such that the above diagram commutes. Then,
by commutativity of the left triangle, we get h(z) = 1 and by commutativity of the right triangle,
we get h(x) = x2, a contradiction. Therefore, &/ (¥;) and 7 (¥3) have no product in Clus. O

5.3. Amalgamated sums. In this subsection, we prove that the amalgamated sums of seeds yield
pushouts of injective morphisms in Clus.

Let 31 = (x1,ex1, B!) and Xy = (x2, exa, B?) be two seeds and let A;, Ay be (possibly empty)
subsets of x; and x5 respectively such that 3; and Y5 are glueable along A, Ay. We recall that
necessarily Ay and As consist of frozen variables.

For any k = 1,2, it follows from Lemma that we have a natural injective rooted cluster
morphism :

and from Lemma that we have a natural injective rooted cluster morphism

e (Sk)— (S1) [ #(52).
Ag,Az

Proposition 5.5. With the previous notations, the diagram

Z(A] (%)

i2 l]l

A (Y2)

is the amalgamated sum of i1 and iy in Clus.

Proof. One must first prove that the diagram commutes. Let z be a variable in the cluster A of
N AyA, D2 Then i; identifies canonically 2 with a variable x; in Ay and iy identifies canonically
x with a variable x5 in Ag. But j; and js then identify canonically 1 and xo with the variable x
viewed as an element in x; [ | AyA, X2 Thus the diagram commutes.

Let now X be a seed such that there exists a commutative diagram in Clus

A1 ) S2) — ()
Aq,Az
igl f1
o (5) ().

fa
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We show that there exists a unique rooted cluster morphism h : &/(X1) [[a, a, & (E2)— & (2)
such that the following diagram commutes :

(1) o (31) H A ()

. AL A .
A N
o (£1) (%) A (32).

f1 fa

For any k = 1,2 we identify Ay with A C x; ][5, A, X2 via the morphism ji. It follows
from the commutativity of the first diagram that fi(z) = fo(x) for any © € A. We thus set
h: 9\21 HAl As ST 322 via

filz) = fo(x) fzeA;
h(z) =4 fi(z) if ¢ €x; ;
f2(x) if € Xo.

Because f1 and fy are rooted cluster morphisms, A is necessarily also a rooted cluster morphism
and therefore the diagram commutes. Conversely, if h is a rooted cluster morphism such that
the diagram commutes, then h is entirely determined by its values on x; [ | AL, X2 and it is
easily seen that h must be the above morphism. O

5.4. Topological interpretation of the amalgamated sums. In this subsection we prove that
amalgamated sums of cluster algebras of surfaces correspond to cluster algebras associated with
connected sums of surfaces.

Let (S1,M;) and (S2, M2) be marked surfaces in the sense of [FSTO8] and let 9; and J; be
boundary components respectively of S; and S, such that there exists a homeomorphism h : 9; —
82 satisfying h(al n Ml) = 82 n MQ.

We denote by

(S, M) = (51, My) H (S2, Ma)
01,02
the connected sum of S7 and Sy along h, that is, S is the surface obtained by gluing S; and So
along the homeomorphism h and M = (M7 \ (M1 N01))U (M \ (M2 Nds)) UMy where My is the
common image of 9y N My and 02 N M3 in the surface S (see for instance [Mas77l, p.8]). We denote
by 0 the common image of d; and 0, in the surface S.

Remark 5.6. Even if (S1, M) and (S, Ms) are unpunctured surfaces, the surface (S, M) may
have punctures, see for instance Figure

Let T} and Ty be triangulations of (S7, M7) and (S3, M2) respectively and let X1 and 35 be the
corresponding seeds. Then 0 is identified with a subset of the frozen variables in ¥; and 05 is
identified with a subset of the frozen variables in Y5. In the connected sum (S, M), the collection
T1 U T5 defines a triangulation and we denote by X the associated seed. Then it follows from
Proposition [5.5] that

A (29) = (1) [] #(52)
01,02

where the notation ¥? means that we have frozen the variables corresponding to @ in ¥

Corollary 5.7. In the category Clus, the rooted cluster algebra associated with the triangulation
T of S where the arcs in O are frozen is the amalgamated sum over the polynomial ring Z[J] of the
rooted cluster algebras o (%1) and o/ (X2) associated with the triangulations Th and Ty induced by
T respectively on S1 and Ss.
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Example 5.8. Figure [2] shows such a gluing.

FIGURE 2. An example of connected sum of an annulus and a pair of pants along
a boundary and the induced triangulations.

6. SURJECTIVE ROOTED CLUSTER MORPHISMS

We recall that an epimorphism in a category is a morphism f such that if there exist morphisms
h and g such that gf = hf, then ¢ = h. In this section, we focus on surjective rooted cluster
morphisms, which are particular cases of epimorphisms since Clus is a concrete category.

Remark 6.1. As in the category Ring, epimorphisms in Clus are not necessarily surjective.
Indeed, if one considers the seeds

Y = ((‘Tl)aw, [0])7 and Yo = ((:171), (3:1)7 [O])v

then it follows from Lemma[L.1]that the identity morphism .Zs, = Q(z1)— Q(z1) = Fx, induces
a rooted cluster morphism f : Zz1] = & (X1)— & (22) = Z[xy, f—l] If 33 is another seed and
g, h o (X9)— o (X3) are such that hf = gf, then hf(x1) = gf(x1) so that h(z1) = g(z1) and
as g and h are ring homomorphisms, we also have h(m%) = 9(?21) so that h = g. Therefore f is an
epimorphism.

As f is injective, it follows from Proposition that it is a monomorphism in Clus and thus,
f is an example of a bimorphism (that is, both a monomorphism and an epimorphism) in Clus
which is not an isomorphism.

Proposition 6.2. Let X, %' be two seeds and [ : o (X)— o/ (X') be a surjective rooted cluster
morphism. Then :

(1) any X'-admissible sequence lifts to an (f, X, X')-biadmissible sequence,

(2) 2% C f(Zx).
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Proof. Let y € ex’. According to Lemma there exists x € ex such that f(x) = y so that the
Y/-admissible sequence (y) lifts to the (f, %, ¥')-biadmissible sequence (x). Now let (y1,...,u1)
be a Y'-admissible sequence. We prove by induction on [ that (yi,...,y;) lifts to an (f,%,%')-
biadmissible sequence. If [ = 1, this follows from the above discussion. Otherwise, there exists
y € x’ such that

Yi = Hy;q O O My (y)-

By the induction hypothesis, (y1, ..., y—1) lifts to an (f, X, 3')-biadmissible sequence (z1, ..., 2;-1)
and since f satisfies (CM3), we get

Y= Hf(z_1)© "0 /'l'f(zl)(x) = f(ul’z—1 0---0 Mﬂﬁfl(x))

where z lifts y in ex. Therefore, if 2; = pg_, o -+ o puy—1(x), the sequence (z1,...,x;) lifts
(y1,---,y1). And moreover, y; € f(Zx), which proves the corollary. O

Corollary 6.3. Let X1 and Xy be two seeds and f : o (31)— o/ (X2) be a surjective rooted cluster
morphism. Assume that X1 is of finite cluster type. Then Yo is of finite cluster type.

6.1. Specialisations. It is well-known that specialising frozen variables to 1 allows one to realise
coefficient-free cluster algebras from cluster algebras of geometric type, see for instance [FZ07].
In this subsection, we study the slightly more general case where an arbitrary cluster variable,
frozen or not, is specialised to an integer (which can essentially be assumed to be 1). If the
considered cluster variable is frozen, then one finds natural surjective rooted cluster morphisms.
More surprisingly, as we prove in certain cases (and expect in general), specialising an exchangeable
cluster variable to 1 also leads to rooted cluster morphisms.
We start with a technical lemma :

Lemma 6.4. Let o/ be a rooted cluster algebra and let x be a cluster in <. Let m =[], . xde

be a Laurent monomial in the variables in x, with d, € Z for any x € x. Then the following
conditions are equivalent :

(1) m is an element in o ;
(2) di >0 for any x € x ;
(3) m is a monomial in x.

Proof. Let ¥ be a seed containing the cluster x. It is clear that the second and third assertions
are equivalent and that the second implies the first one. Therefore, we only have to prove that the
first one implies the second one. Assume that there exists some x € x such that d, < 0. Because
the elements in &/ are Laurent polynomials in the exchangeable variables of x with polynomial
coefficients in the frozen variables of x (see for instance [FZ03, Proposition 11.2]), if d,, < 0, then the
variable x is necessarily exchangeable. Let thus ¥/ = (x/,ex’, B) = p, X with x' = (x\ {z})u{z'}.
Then the expansion of m in ¥/ is

/ —do
ne 11 v :
- b —b :
[L,.502% +111,.<027"

yeEX\T

In particular, m is not a Laurent polynomial in the cluster x’ and thus, according to the Laurent
phenomenon (see [FZ02]), m does not belong to 7. O

Let ¥ = (x,ex, B) and let z € x. We denote by ¥\ {z} the seed X1\ (;} = (X/,ex’, B’) where
x' =x\{z}, ex' = ex\ {z} and b}, = b,. for any y, z # x in x'.
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Definition 6.5 (Simple specialisation). Let n € Z. The simple specialisation of x to n is the ring
homomorphism :
T — In\()
Ogm T = n,
z = zifzex\{z}.

The following lemma shows that, except degenerate cases, the only value to which we can
specialise a (single) cluster variable is 1.

Lemma 6.6. Let ¥ = (x,ex,B) be a seed, let © € x and let n € Z. Assume that o, , induces
a ring homomorphism of (3)— o (X \ {z}). If there exists some y € ex such that byy # 0, then
n € {—1,1}. If there exists some y € ex such that by € 2Z+ 1, then n = 1.

Proof. Let € x, X' = x\ {z} and ¥ = ¥\ {z}. Assume that there exists y € ex such that
byy # 0. Without loss of generality, we assume that b,, > 0. Then

oy =) = o 5 I1 =+ [[ =

bzy>o0 by=>0
1
Y bzy>0 by2>0
z#x z#x
1 / /
= = [ nlev H 2P 4 H 2P
Y
bly>o byz>0

() = = IT =%+ I =

Y \y b

zy>0 yz>0

Thus, if ¢ induces a ring homomorphism between the rooted cluster algebras, we get o (1, 5 (y)) €
(X \ {z}) and so the difference o (uy 5 (y)) — n’v u, s (y) also belongs to &7 (X \ {z}).

But 1
o (py5(y)) = n" vy 50 (y) = —(1=nl=») [T 2%
Y b >0
yz

is a Laurent monomial in the cluster x’ such that the exponent of y is —1 < 0, with y € ex.
Therefore, it follows fromthat necessarily 1 —nbsv = 0, that is, n%» = 1 and thus n € {-1,1}.
If moreover b,, is odd, we necessarily have n = 1. O

Example 6.7. We exhibit an example where a simple specialisation to —1 does not induce a map
at the level of the corresponding cluster algebras. Consider the cluster algebras of respective types
Az and A, associated with the coefficient-free seeds

Y= ((xl,xz,xg), 1%2%3) and ¥/ = ((xl,xz), 1—>2)

and consider the simple specialisation o = 0,, 1 of 3 to —1.
The image under o of the cluster variable H;Ei;“ is % But if % is in 7 (X'), then, since
Lo s in o7 (YY), we get = € o7/(X'). Then the expansion of 2 in the cluster (z1,25,) of the seed
xro g ) xro 2

pa () is 21_7_11 which is not a Laurent polynomial, a contradiction.

The following lemma shows that the study of simple specialisations in -1 can be reduced to the
study of simple specialisations to 1.
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Lemma 6.8. Let ¥ = (x,ex,B) be a seed and let © € ex be such that by, € 2Z for any y € ex.
Then o,,—1 is a rooted cluster morphism if and only if 0,1 is. Moreover, in this case 04 _1(a) €
{os1(a),—0z1(a)} for any a € Zx.

Proof. Both o, 1 and 0, 1 satisfy (CM1) and (CM2). Now we observe that a sequence of variables
is (04,—1,%, X \ {z})-biadmissible if and only if it is disjoint from x, which is also the condition
for this sequence to be (0,,1,%,% \ {z})-biadmissible. Let a # x be an exchangeable variable
in ¥. Then, since by, € 2Z for any y € ex, it follows that that o, —1(te,n(a)) = 04,1(1a,x(a)).
Moreover, if u, % =3’ = (x’,ex’, B’), then it follows from the mutation rule for exchange matrices
that b}, € 27Z for any y € ex’. Therefore, by induction, o, ; satisfies (CM3) if and only if o, 1
does. Hence, it only remains to prove that o, _; induces a map &/ (X)— &7 (2 \ z) if and only if
05,1 does. This follows from the fact that o, _1(a) € {—04,1(a),04,1(a)} for any a € Zx, which is
easily proved by induction. O

Proposition 6.9. Let ¥ = (x,ex, B) be a seed and let x € x. Then 0,1 induces an ideal surjective
rooted cluster morphism o (X)— o/ (X \ {z}) if and only if it induces a ring homomorphism

Proof. Let ¢ = 0,,1. Then o clearly satisfies (CM1) and (CM2). In order to prove (CM3), it
is enough to notice that a X-admissible sequence (z1,...,2;) is (0,2, X \ {z})-biadmissible if and
only if xy # x for any k such that 1 < k <[ and to proceed by induction on [. It follows that o
is a rooted cluster morphism if and only if o induces a ring homomorphism &7 (¥)— &7 (X \ {z}).
Its surjectivity comes from the fact that any admissible sequence in ¥\ {«} can naturally be lifted
to a (0, %, ¥\ {z})-biadmissible sequence. In order to prove that o is ideal, it is enough to observe

that o(X) = X\ {z} so that o(# (X)) = Z(X\ {z}) = Z(c¢(2)). O

6.2. Simple specialisations in general. In general, we expect that simple specialisations of
cluster variables to 1 induce rooted cluster morphisms.

Problem 6.10. Let ¥ = (x,ex, B) be a seed and let x € x. Then does 041 induce a surjective
ideal rooted cluster morphism o (X)— o/ (X \ {z}) ?

We now prove that simple specialisations preserve upper and lower bounds of cluster algebras
in general.

Given a seed ¥ = (x,ex,B), and given an element = € ex, we denote by p;(ex) the set of
exchangeable variables in p,(¥) so that Z[x \ ex][u,(ex)*!] is the set of Laurent polynomials in
the exchangeable variables of u,(X) with polynomial coefficients in the frozen variables of . (X).

We also set
ex = U g (€x)

reex
to be the set of all the exchangeable variables in the seeds obtained from X by applying exactly
one mutation.
Following [BFZ05], we set :

Definition 6.11. (1) The lower bound of &/ (%) is
Z(¥) =Z[x \ ex][ex U ex'].
(2) The upper bound of </ (%) is
U (%) = Zx \ ex|[exT!] N ﬂ Z[x \ ex][uz (ex)F].

reex

These are subalgebras of .#x and we always have the inclusions .Z(¥) C (X)) C % (2).
Proposition 6.12. Let ¥ = (x,ex, B) be a seed and let x € x. Then :
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(1) Uw,l(g(z)) C 3(2 \ {'r}) ;
(2) oo (% (X)) C %3\ {x}).

Proof. If x is frozen, the result is clear. Therefore, we fix some exchangeable variable x in ex. In
order to simplify the notations, we set 0 = 0, 1.

Let z be a cluster variable in X. If z is frozen, then o(z) = z so that o(z) is both in the upper
and in the lower bounds of &7 (X \ {z}). Assume now that z is exchangeable. If z # x, we have

1 _
o(ns5(2)) = o | - I v+ I] v
by->0 ; by =<0 ;
YyeEX YEX
1 b —b
= — yz z
S| I v I v
by->0 ; by,-.<0 ;
yex\{z} yex\{z}
= ,uz,Z\{a:}(Z)

If z =z, we get

ety <o 1| T Tt | | = T o T1 o

bay >0 bay <0 bay >0 bay <0
yex yex yex\{z} yex\{z}
It easily follows that o(Z(2)) C Z(X\ {z}) and o(Z (X)) C Z (X \ {z}). O

Therefore, we can deduce from [BFZ05] the following corollary.

Corollary 6.13. Let ¥ = (x,ex, B) be a finite acyclic seed and x € x. Then 041 induces an ideal
surjective rooted cluster morphism of (X)—s of (3 \ {z}).

Proof. Since ¥ is a finite acyclic seed, it follows from [BFZ05, Theorem 1.20] that &7 (X) = Z(2).
Therefore, o(</(X)) = 0(Z (X)) C L(X\ {z}) C &/ (X \ {z}). The result therefore follows from
Proposition [6.12] O

6.3. Specialisations for cluster algebras from surfaces. In this section, we prove that sim-
ple specialisations induce surjective rooted cluster morphisms for cluster algebras associated with
surfaces.

Given a marked surface (S, M) and an internal arc 7 in (S,M), we denote by d.(S, M) the
(non-necessarily connected) marked surface obtained by cutting (S, M) along . The arc 7 induces
in d, (S, M) two new boundary arcs which we denote by 71 and 2. Now if T is a triangulation of

(S, M), then
dyT = (T\{v}) U{n, 72}

is a triangulation of d, (S, M).
Figures [3| and [4] present examples of cuttings of surfaces along an arc.
Note that the seed ¥q 7 differs from the seed X1\ {2, }. However, we have g 7[T'\ {71,72}] =

Sr[TA\ {7}

Theorem 6.14. Let (S, M) be a marked surface, T be a triangulation of (S, M) and X1 be the
seed associated with T. Then for any v € T which does not enclose a degenerate marked sur-

face, the simple specialisation of x~ to 1 induces an ideal surjective rooted cluster morphism in
A (Br)— A (B \ {z4}).
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FI1GURE 3. Cutting a disc with two punctures to get an annulus.

FIGURE 4. Cutting an annulus to get a disc without punctures.

Proof. If 7y is a boundary arc, then ., is a coeflicient and the result is well-known, see [FZ07]. We
may thus assume that v is an internal arc.

According to Proposition @ as 0 = 0.1 is a ring homomorphism, in order to prove that o is
a rooted cluster morphism, it is enough to prove that the image of o is contained in & (X7 \ {z,}).
For this we only need to prove that o(z,) € /(37 \ {z4}) for any (possibly tagged) arc n in
(S, M). For the sake of simplicity we only prove it for an untagged arc n. The case of tagged arcs
is a straightforward adaptation.

Let n be an arc in (S, M). Resolving the intersections of 7 with 7 (using for instance the
resolutions described in [DP11] or more generally the skein relations described in [MW11]), we can
write x,x, as a linear combination of products of xg where 6 runs over a family of curves which
do not intersect 7.

Every curve which does not cross 7 induces a curve in the surface d. (S, M). Let 7 denote the
specialisation of x,, and z,, to 1. Then, as v; and -, are boundary arcs, 7 is a rooted cluster
morphism from &/ (X4 1) to o (Eq, 7\ {2,,24,}) = &(X71 \ {z}). Moreover, for any arc § in
(S, M) which does not cross 7, we have o(z9) = 7(x¢).

Therefore, o(x,) = o(x,x,) is a linear combination of 7(z¢) where 6 runs over a family of curves
which do not intersect y. Now for each such curve, zg is an element of the cluster algebra </ (d,T)
and thus 7(zg) is an element of the cluster algebra o7 (X1 \ {z-}).

The fact that o is surjective is clear since any admissible sequence for X7 \ {z,} lifts to an
admissible sequence for Y. The fact that it is ideal comes from the fact that o(Xr) = Zr \

{4} 0

Example 6.15. Consider the once-punctured torus T; and fix a triangulation 7" of T;. It has
three arcs which we denote by 1,2 and 3 and which we show as follows in the universal cover of
Tl .



28 IBRAHIM ASSEM, GREGOIRE DUPONT AND RALF SCHIFFLER

The seed corresponding to this triangulation is the coeflicient-free seed

0 2 =2
ET = (.231,1‘2,1‘3), -2 0 2
2 =2 0

Now, an arbitrary cluster variable in &/ (T;) corresponds to a certain arc. In this example we
choose for instance the curve 1 shown below. Let us cut T; along the arc 1, which we show dashed.
Resolving intersections between 1 and 1, and applying skein relations we get x,z1 = 223 + 270
where 6 does not intersect the arc 1.

* - ——- - —--

We can easily compute

€T3

so that o, 1(zg) = % € /(X \ {z1}). Let us also give a geometric argument.

Cutting T; along the arc 1, we get the annulus C; with one marked point on each boundary
component and {2, 3} together with the two boundary arcs b and b’ induce a triangulation of C1 ;.
The arc 6 in T; induces an arc in C4; and we denote by x, the corresponding cluster variable in

o (Ch1).

Then, it follows directly from the various expansion formulae for cluster variables associated
with arcs (see for instance [ST09, MSWT1I] or [ADSS11]) that zy is given by ), where the variables
xp and xp corresponding to the two boundary components are identified with z;. Indeed, a direct
computation gives

2
TpTy + @
o = bTy + 2
3

In particular, if we specialise zp, z; and z1 to 1, we still get equality. However, the cluster
algebra associated with C'; whose frozen variables are specialised to 1 is nothing but the cluster
algebra associated with the seed & (X1 \ {z1}).
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6.4. Specialisations and additive categorifications. More generally, we can provide a partial
answer to Problem using the theory of cluster categories and cluster characters. For the
necessary background on this theory, we refer the reader to [Kell0] and references therein.

Philosophically speaking, the proof of the following theorem follows the lines of the proof of
Theorem where, in the spirit of [BZ12|, objects in categories should be thought of as curves
in surfaces, extensions of objects as intersections of the corresponding curves and “Hall products”
as skein relations.

We say that a seed ¥ = (x, ex, B) admits a 2-CY categorification if it is finite, skew-symmetric
and if the quiver @) corresponding to the exchange matrix in 3 admits a Jacobi-finite non-degenerate
potential. For instance, any finite skew-symmetric seed which is mutation-equivalent to an acyclic
seed admits a 2-CY categorification, see [BMR.T06, [Ami09].

If ¥ admits a 2-CY categorification, we denote by €' (X) the (generalised) cluster category at-
tached to the quiver with potential (Q, W), see [Ami09]. We recall that the cluster character is a
certain map X» : Ob(%(2))— Z[x \ ex][ex™!] which assigns to any object M in ¢'(X) a Laurent
polynomial Xj; € Z[x \ ex]|[ex*!] which actually belongs to the upper cluster algebra % (%), see
[Pal08, DWZ10].

We denote by 2Z°(X) the character algebra, that is, the subalgebra

2 (X) = Z[x \ ex][Xy | M € Ob(€(X))] C % (D).

It is know that &/ (X) C 2°(X) and that the inclusion can be strict, see [Plallc]. However, to the
best of our knowledge, it is not known whether the inclusion 2 (X) C % (%) can be strict.

Theorem 6.16. Let ¥ = (x, ex, B) be a seed which admits a 2-CY categorification. Then for any
z € x, we have 0,1(Z (X)) C Z(2\ {z}) ®z Q.

Proof. Without loss of generality we can assume that ¥ = ¥ is simplified. Let ¢ = %(X) denote
the corresponding cluster category. This is a Hom-finite triangulated 2-CY category and we denote
its suspension functor by [1]. Let T = €, ., Ty, be a cluster-tilting object in & corresponding to
the seed 3, see [FK10].

Let T;- be the full subcategory of € formed by the objects V such that Home (T, V) = 0.
Then it follows from [[Y08] that ¢’ = T3 /T,[1] is a Hom-finite 2-Calabi-Yau category and that
T = @y@(\{z} T, is a cluster-tilting object in €.

We denote by X» (or X3, respectively) the cluster character associated to T on % (or to T' on
%, respectively).

Let 0 = 0,1 be the simple specialisation of z to 1. Let M be an object in €. We prove by
induction on the dimension of Home (T, M) that o(Xs) is a finite Q-linear combination of X{
where Y runs over the objects of €.

Assume first that Home (T, M) = 0, that is, M belongs to T;-. Then M can be decomposed
as M @ T,[1]™ for some m > 1 where M has no direct summand isomorphic to T,[1]. Therefore,

o(Xy) = G(XMEBTI[U"") = o(X3rX 7o) = o(Xgp)o (X7 py) = o(Xgp)o(@™) = o(Xz7)-

Since M belongs to T3, the object M belongs to T;-/T,[1] and is thus identified with an object
in ¢’. Now it follows easily from the definition of the cluster characters that o(Xz7) = X5
Therefore, o(Xps) belongs to &7 (X \ {z}).
Assume now that Home (T3, M) # 0. Therefore,
Exte (T, (1], M) = Home (T, [1], M[1]) ~ Home (T, M) # 0.
Then it follows from [Palll] that the product (dim Exts (T,[1], M) X1, 111X ) is a Z-linear combi-
nation of Xy’s where Y runs over middle terms of non-split triangles of the form

(2) M—Y—T,[1]— M[1]

YyEX
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or of the form
(3) T, [1]—Y % M % T,[2).
In other words, we have

(4) .IXM = ZnyXy
Y

where (ny) C Q is finitely supported on a set of isoclasses of objects Y in ¢ such that there exists
triangles of the form or .

We claim that dim Home (7,,Y) < dim Home (T}, M) for any Y such that ny # 0. Indeed,
assume first that Y is such that there exists a triangle of the form , that is,

T, % M2y — 11— M.
Applying the homological functor Home (T, —) to this triangle, we get the long exact sequence
Ende (T,) 2 Home (T, M) 22 Home (Ty, Y)— 0,

so that the post-composition by § yields an epimorphism Home (T, M) LN Home (T,,Y). Since
the sequence is exact, we have Ker(8,) = Im(c.). Moreover, Endy(T,) —= Home (Ty, M) is
non-zero since a,(1r,) = a # 0. Therefore, dim Hom¢ (7,,Y) < dim Home (T, M) in this case,
as claimed.

Assume now that Y is such that there exists a triangle of the form , that is,

T,[1]—Y % M % T,[2).
Applying the homological functor Home (T, —) to this triangle, we get the long exact sequence
0— Home (Ty, V) 25 Home (Ty, M) 22 Home (T, To[2)).

Therefore, the post-composition by a yields an injection Home (T}, Y) = Home (T, M). In order
to prove that the injection is proper, since the sequence is exact, we need to prove that the post-
composition Home (T, M) by Homg (T, T»[2]) is non-zero. Since € is 2-Calabi-Yau, we have the
commutative diagram

Home (T, M) — Home (Ty, T, [2))

Nl lw

DHome (M, T, [2]) 2 DEnde (T [2])

where D = Homy (—, k) is the standard duality and End¢ (7,.[2]) LN Home (M, T, [2]) is the pre-
composition by b. Since b is non-zero, b* (17, [9)) # 0 and thus Db* is non-zero so that b, is non-zero.
This proves the claim.

Therefore, equality allows to write £X,; as a Q-linear combination of elements Xy where
dim Home (T}, Y) < dim Home (T, M). If dim Home (T, Y) = dim Extl (T,[1],Y) # 0, we can
again write x Xy as a linear combination of cluster characters of objects for which the dimension
is strictly smaller. Proceeding by induction, there exists some n > 1 such that "X, is a Q-
linear combination of elements of the form Xy where dim Home (T;,Y) = 0. Therefore (X ) =
o(z™ X)) is a Q-linear combination of o(Xy) with dim Home (T,,Y) = 0. Hence, it follows from
the previous discussion that (X)) belongs to the character algebra 2 (X \ {z}). O

Remark 6.17. Plamondon has developed a similar framework of cluster categories and cluster
characters for non Jacobi-finite quivers with potential, see [Plallbl [Plallal]. This framework allows
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one to deal with arbitrary skew-symmetric seeds. Our proof would generalise to this context if one
is able to prove the analogue of Palu’s multiplication formula [Palll] in this context.

The following example illustrates the fact appearing in the proofs of Theorems and
that the simple specialisation of an exchangeable variable to 1 does not send a cluster variable to
a cluster variable in general, but rather sends it to a linear combination of elements in the cluster
algebra.

Example 6.18. Consider the coefficient-free seed ¥ = ((x1, 2, x3,x4), B) where

0 0 0 1

0 0 0 1

B = 0 0 0 1
-1 -1 -1 0

is the incidence matrix of the quiver @ of Dynkin type D4 where 4 is a sink.
We consider the specialisation of x4 to 1 so that we also consider the seed

E\ Az} = ((z1, 22, 23),[0])
which is of type A; x Ay x A;. In particular,
2 2 2
’Q{(Z \ {1‘4}) =7 Ty, —, T2, —,T3, — | C Q(l‘l,.’I]Q,.’I}g).
X T2 T3

Consider the cluster variable in /(%)

I 14+ ziz003 + 324 + 3:U?1 + :cﬁ
T1X2X3T4

which, in the context of [CCO6, IBMRT06|, corresponds to the cluster character of the indecom-
posable representation of @ with dimension vector (1111).

Then

8 2 2 2
Ourn(@) = tl= 22
XT1T2T3 T T2 I3

is the sum of 1 and the cluster monomial in &7 (X \ {x4}) corresponding to the cluster character of
the semisimple representation with dimension vector (111) of @ \ {4}.
Now consider the cluster variable in &7 (%)

14+ 2z12923 + x%x%x% + 3z4 4+ 3x1290374 + 31:2 + xi
z =

T1T2x3T]

which corresponds to the cluster character of the indecomposable representation of () with dimen-
sion vector (1112).

Then
2 2 2
O'm471(£€) = ———+5+ T1T2X3.
1 T2 I3

is a linear combination of three distinct cluster monomials in o7 (3 \ {z4}).

6.5. An example of multiple specialisation in zero. For any m > 4, we denote by Gry(m)
the set of planes in C™ and let C[Gra(m)] denote its ring of homogeneous coordinates. It is known
that
C[Gra(m)] =~ & (X)) ®z C

where ¥, is the seed constructed in see for instance[Sco06] or [GSV10, Chapter 2]. The
cluster variables in &7 (II,,) are identified with the Pliicker coordinates zj;, with 1 <k <1 <m in
C[Gra(m)] in such a way that the Pliicker coordinate xj,; corresponds to the arc joining & to [ in
I1,,, see [loc. cit.].
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Let m,m’ be integers such that 4 < m’ < m. The choice of an inclusion of C™ into C™ induces
an embedding ¢ : Gra(m’)— Gra(m) and thus an epimorphism of C-algebras :

" : C[Gra(m)]—> C[Gra(m/)].
If } ;, with 1 <k <1 <m/, are the Pliicker coordinates on C[Grz(m')], then the morphism ¢*
is given by

N ! ifl <m/
cl@n) { 0" itlsm

for1<k<li<m.

Proposition 6.19. There exists a unique rooted cluster morphism Ty, my @ A (B)—> & (Zp)
such that 1* = m ®yz lc.

Proof. Consider the ring homomorphism 7, ./ : Fx,, — .%x_, acting as ¢* on the Pliicker coor-
dinates. Then 7 defines a ring homomorphism from &/ (%,,) to </ (%,,/). Moreover, m,, ,,,» satisfies
(CM1) and (CM2) by construction.

Exchange relations in &/ (%,,) are given by

TijTl = TikXj1 + Tk

for any 14,7, k,l such that 1 < i < k < j <l <m and similarly for &7 (%,,/). Thus, 7 sends exactly
the exchange relations involving only 5, with 1 < i < k < j <l <m in &/(%,,) to the same
exchange relations for xﬁw with 1 <i<k<j<l<m in & (3, ). In other words, 7 commutes
with mutations along biadmissible sequences and thus satisfies (CM3).

For uniqueness, it is enough to observe that if such a morphism 7, s exists then it necessarily
acts as ¢* on the Pliicker coordinates and thus it is unique. O

7. SURGERY

In this section we introduce a combinatorial procedure, called cutting, which turns out to be
the inverse process of the amalgamated sums considered in Section More precisely, these
cuttings provide epimorphisms in Clus which are retractions of the monomorphisms constructed
from amalgamated sums of rooted cluster algebras.

7.1. Cutting along separating families of variables.

Definition 7.1 (Separating families). Let ¥ = (x,ex, B) be a seed. If there exist a subset

A C (x\ex) and a partition x = x; UxaUA such that, with respect to this partition, the exchange
matrix B is of the form

Bi, | 0 | B

B=| 0 | B} | B3

By, | B3, | Ba

then we say that A separates x1 and xo in X.

For j € {1,2}, we set @)% = (x; U A, ex Nx;, B/) where
B = [ Bil B{Z ] )
B3, B

Definition 7.2 (Cutting). Let ¥ = (x,ex, B) be a seed and let A be a separating family of
variables as above. The cutting of ¥ along A is the pair

dAY = (d\X,d3Y).
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Example 7.3. Consider for instance the matrix

33

0 1 0 0] -1
-1 0 0 0 1
B = 0 0 0 1| -1
0 0]—-1 0 1
1 -1 1 -1 0
corresponding to the quiver
le —— o2
N S
@B o

5

30— 04

with point 5 frozen. Then cutting along 5 gives two oriented 3-cycles with one frozen point each :

le — o2

N

oot O

30— o4

The following lemmata prove that the cutting is the inverse operation to the amalgamated sum
of seeds.

Lemma 7.4. Let ¥y and Yo be seeds which are glueable along A1 and Ag and let 3
h HAl,Az Yo. We denote by A the subset of the cluster of ¥ corresponding to A1 and As. Then :

(1) A separates x1 \ A and x2 \ A in X ;
(2) d\E ~%; for any i€ {1,2}.

Proof. By definition, we have ¥ = ¥ HAI,AQ Yo = (x,ex, B) where x = (x1 \ A1) U(xa\ Ag)UA,
ex = ex; Llexy and

B, | 0 | Bi
B=|"0 | B} | B
B}, | B3y | Ba

Therefore, for any i = 1,2, the cluster of d4\ ¥ is x; \ A; U A, the exchangeable variables in this

cluster are the exchangeable variables in ¥, (none of them belongs to A by assumption) and the
exchange matrix of this seed is

) B?

pi = [ B ] .

{ Bj,

B,
Ba
Therefore, di ~ %;.

Conversely :

Lemma 7.5. Let X be a seed and A a separating family of variables in ¥. Then d\Y and dA %
are glueable along the respective images Ay and Ao of A and
dyy [] Az ~=x.
Aq,A
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Proof. We write ¥ = (x, ex, B). Since A is separating in 3, there exists a partition x = x; UxsUA
such that, adapted to this partition, B is given by

Bi, | 0 | B
B = 0 | B} | B
B%l 3221 Ba

and since A consists of frozen variables, ex = (ex Nx;) Ll (ex N Xa).
By definition, for i = 1,2, we have d’y > = ¥; where

Zi = (Xi (] A,exﬂxi,Bi)

with
B4, | Ba
It follows that ¥; and X, are glueable along A, A and thus

o1 ] B2~ (x,ex,B) = %.
AA

O

7.2. Epimorphisms from cuttings. Let ¥ be a seed and A a separating family of variables in
¥ as above and set 3; = d4 ¥ for any i € {1,2}.

Fix i € {1,2}. It follows from Lemmatal[7.4] [7.5|and that we have canonical monomorphisms
in Clus :

Ji + A (8;)— A (D).
Consider the ring homomorphism :
yg — ggi
pr; r = zifrex;UA,
z = 0Oifzxex;fori#j.

Proposition 7.6. For any i € {1,2}, the ring homomorphism pr; induces a rooted cluster epi-
morphism o (X)— o (X;) which is a retraction for j;.

Proof. We first observe that
pr;(x) C x; UA U {0} and pr;(ex) C (exNx;) U {0}

so that pr; satisfies (CM1) and (CM2).

In order to prove that pr; satisfies (CM3), we prove as in Lemma that the (pr,, X, %;)-
biadmissible sequences are precisely the X;-admissible sequences and that A remains separating
along biadmissible mutations. It follows as in the proof of Lemma that pr, commutes with
biadmissible mutations and thus satisfies (CM3) and induces a surjective rooted cluster morphism

Finally, as (pr; o j;)(z) = for any z € x; U A, we get pr; o j; = 1(5,). O

In general, we state the following problem :

Problem 7.7. Determine which monomorphisms in Clus are sections.
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7.3. Topological interpretation of the surgery. Let (S, M) be a marked surface. Assume that
there exists a collection A of (internal or boundary) arcs in (S, M) which can be concatenated in
order to form a simple closed curve in (S, M) which delimits two non-degenerate marked subsurfaces
(Sl, Ml) and (SQ, Mg) in (S, M)

Consider a triangulation T of (S, M) containing A as a subset. Then T induces two triangula-
tions Ty and T4 of (S1, M7) and (Ss, My) respectively in which A corresponds to a set of boundary
arcs, that is, to frozen variables. We denote by % the seed corresponding to the triangulation T°
and by X;, ¥s the seeds corresponding respectively to the triangulations 77 and T5. Then A is a
separating family of variables in ¥ and

da(X) = (31, X2).

In other words, cutting . along A coincides with taking the seed associated with the triangulation
of the surface obtained by cutting (S, M) along A.

Example 7.8. Consider the following triangulation of the disc with two marked points on the

boundary and five punctures.

Let A denote the union of the four arcs which are dashed in the above figure. Cutting the
surface along A gives two new marked surfaces, namely an unpunctured annulus with two marked
points on a boundary and four marked points on the other and a disc with four marked points on
the boundary and one puncture. The triangulation of the above disc containing A thus induces
triangulations of the two cut surfaces.

Then we clearly see that the cluster algebra associated with the initial surface where the arcs
in A are frozen is the amalgamated sum over the respective images of A of the two cut surfaces.
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