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Summary

For normal canonical models, and more generally a vast array of general spherically symmetric location-
scale models with a residual vector, we consider estimating the (univariate) location parameter when it is
lower bounded. We provide conditions for estimators to dominate the benchmark minimax MRE estimator,
and thus be minimax under scale invariant loss. These minimax estimators include the generalized Bayes
estimator with respect to the truncation of the common non-informative prior onto the restricted parameter
space for normal models under general convex symmetric loss, as well as non-normal models under scale
invariant Lp loss with p > 0. We cover many other situations when the loss is asymmetric, and where other
generalized Bayes estimators, obtained with different powers of the scale parameter in the prior measure,
are proven to be minimax. We rely on various novel representations, sharp sign change analyses, as well
as capitalize on Kubokawa’s integral expression for risk difference technique. Several other analytical
properties are obtained, including a robustness property of the generalized Bayes estimators above when
the loss is either scale invariant Lp or asymmetrized versions. Applications include inference in two-sample
normal model with order constraints on the means.
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1. Introduction

1.1. Preamble

We begin with the normal model in canonical form

X ∼ N(µ, σ2), S2 ∼ σ2χ2
n, independent (n ≥ 1), (1)

which plays a central role in both statistical theory and practice. Consider situations where addi-
tional information on (µ, σ) is available in terms of parametric restrictions. Bayesian inference in
such restricted parameter space problems does not, conceptually, present any difficulties as both
the prior and the resulting posterior will be adapted and will adapt to the constraints. Assess-
ing the frequentist performance of Bayesian estimators in such situations is, however, considerably
more challenging. Such assessments may include, for instance, testing for minimaxity, an evalua-
tion in comparison to a benchmark procedure such as minimum risk equivariant (MRE) estimator

1Corresponding author: m−jafari−jozani@umanitoba.ca

1



or a maximum likelihood estimator (mle), or a study of the frequentist performance of associated
Bayesian confidence intervals.

As an illustration, consider model (1) with known σ and the nonnegative mean restriction µ ≥ 0.
Despite early discoveries by Katz (1961) and Sacks (1963) that the generalized Bayes estimator
with respect to the flat prior on [0,∞) is minimax and dominates the MRE estimator δ0(X,S) = X
under squared error loss, despite various generalizations to other models and location invariant
losses (Farrell, 1964; Kubokawa, 2004; Marchand and Strawderman, 2005), no other Bayes minimax
estimators were known until the Maruyama and Iwasaki (2005) findings which provide other Bayes
minimax estimators under squared error loss. Even then, little has been obtained for estimating
µ in (1) for µ ≥ 0 and unknown σ. In this case, Kubokawa (2004) obtained, for scale invariant
squared error loss, a class of minimax improvements on δ0, which includes the generalized Bayes
estimator δπ0(X,S) with respect the truncation of the usual non-informative prior onto the restricted
parameter space (see expression 6).

Our main motivation for his work has been to generalize and better understand Kubokawa’s findings.
The paper consists of various extensions with respect to the loss, the model, and the prior; which
bypass in a unified way the specific normal case-squared error loss calculations by Kubokawa.
Several new technical aspects have been developed to meet such challenges.

1.2. The problem

As an extension of model (1), we consider spherically symmetric models for an observable (X,U) =
(X,U1, . . . , Un) with density proportional to

1

σn+1
f(

(x− µ)2 + ‖u‖2

σ2
) , (2)

and with n ≥ 1, µ ≥ 0, σ > 0. The function f : R+ → R+ is known, and it assumed throughout
that:

f ′ < 0, and
tf ′(t)

f(t)
decreases in t for t > 0 . (3)

Hereafter, for conciseness, reference to model (2) shall be understood to encompass these assump-
tions on f . Multivariate (for X) versions of (2) have been previously considered, namely in recent
work where robust minimax generalized Bayes estimators of µ without constraints are provided
(see Fourdrinier and Strawderman, 2010). Various other features of such models are described in
Section 2.1.

We consider estimating µ where it is assumed that (µ, σ) ∈ Θ = {(µ, σ) : µ ≥ 0, σ > 0} under
location and scale invariant loss

ρ(
d− µ
σ

), (4)

with (i) ρ absolutely continuous a.e., (ii) ρ strictly bowled shaped with ρ(t) ≥ ρ(0) = 0 for all
t ∈ <, ρ′ < 0 on (−∞, 0) and ρ′ > 0 on (0,∞). We also assume that the pair (f, ρ) leads
to risk finiteness, namely that there exists a unique minimum risk equivariant estimator for the
unconstrained problem. In such cases, it is given by δ0(X,S) = X + c0S with constant risk
R((µ, σ), δ0) = E0,1[ρ(X + c0S)], and with (also see Remark 3)

c0 = argminc{E0,1[ρ(X + cS)]} , (5)
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which is uniquely determined by E0,1[Sρ′(X + c0S)] = 0 . It is also worth pointing out that c0 = 0
for symmetric losses ρ, and consequently that the MRE estimator coincides with the unbiased
estimator X, and is robust with respect to the choice of the underlying model density f . It follows
from Kiefer (1957) that δ0 is minimax for the unconstrained problem. With the constraint on
µ, δ0(X,S) produces indeed implausible estimates, but it remains minimax (see Marchand and
Strawderman, 2011, and references therein) for general ρ, and its constant risk thus matches the
minimax risk. The challenge here is to search for good improvements on δ0(X,S) that capitalize
on the parametric information, and we focus on potential Bayesian improvements such as the
generalized Bayes estimators δπl with respect to the prior measures

πl(µ, σ) =
1

σl+1
1[0,∞)(µ)1(0,∞)(σ) ; l ≥ −(n− 1) ; (6)

the lower bound on l required for the posterior density to be well defined. The class includes the
choice π0 which is of intrinsic interest as it represents a plausible adaptation, or truncation onto Θ
of the right Haar invariant measure πrh with the MRE estimator (also) being the generalized Bayes
estimator δπrh with respect to πrh. Moreover, the study of frequentist properties on the restricted
parameter space of Bayesian procedures associated with π0 or, more generally, truncations of the
right Haar invariant prior measure has recently surfaced in interval estimation problems (Zhang
and Woodroofe, 2003; Marchand and Strawderman, 2006; Marchand et al., 2008).

In Section 2, we further describe features of the underlying model and present various expressions,
properties, and illustrations relative to the Bayes estimators δπl . Namely, we establish a robustness
property, applicable to scale invariant Lp loss with ρ(t) = |t|p, p > 0, and asymmetrized versions as
given in (13), stating that the Bayes estimator δπl does not depend on the underlying f in (2).

The developments of Section 3 make use of Kubokawa’s (1994) IERD (Integral Expression of Risk
Difference) technique to derive classes of dominating (minimax) estimators of δ0(X,S) = X + c0S.
With further analyses, which bring into play novel technical arguments of interest on their own,
we provide several instances of (f, ρ) where these classes of minimax estimators include Bayesian
estimators of the type δπl . Namely, we establish in Sections 4 and 5 that:

(A) The Bayes estimators δπl with l ≥ 0 dominate δ0 for normal models in (1) and general convex
ρ’s such that ρ is even. The estimator δπ0 also dominates δ0 for asymmetric ρ′s such that
|ρ′(u)| ≥ |ρ′(−u)| for all u > 0;

(B) The Bayes estimators δπl with l ≥ 0 dominate δ0 for all (fixed) f in (2) satisfying assumption
(3), and whenever the loss is scale invariant Lp, p ≥ 1. The estimator δπ0 also dominates δ0

for asymmetrized versions as given in (13) (where |ρ′(u)| ≥ |ρ(−u)| for all u > 0 as in (A);

(C) The Bayes estimator δπ0 dominates δ0 for all (fixed) f in (2) satisfying assumption (3), and
whenever the loss is scale invariant Lp with p ∈ (0, 1).

The ensemble of results provide extensions of Kubokawa’s normal case, scale invariant squared error
loss result applicable to δπ0 in three directions: choice of f , choice of ρ, and applicability to other
Bayesian estimators δπl ’s. Moreover, the developments relative to (A), (B), and (C) are unified and
contain two alternative proofs replicating Kubokawa’s result. It is also notable that (C) involves
the case of a concave in |d−µ

σ
| (and hence non-convex) loss. Finally, various other observations,

including non-minimaxity results, are also given throughout the exposition and in Section 6.
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2. Preliminary results and properties of the estimator δπl

2.1. The underlying model

In (2) and (3), the density of (X,U) is unimodal with central location parameter (µ, 0, . . . , 0) and
scale parameter σ. Our parameter of interest is the nonnegative µ, or median, of X, while U is
a residual vector. Condition (3) is equivalent to an increasing monotone likelihood ratio (mlr) in
(X − µ)2 + ‖U‖2 of the family of densities in (2) when viewed as a scale family (parameter σ)
with known µ. Assumption (3) is, for unimodal and symmetric densities, weaker than both (a) the
logconcavity of f(y) and (b) the logconcavity of f(y2) for y > 0, with (a) implying (b), and with
(b) equivalent to an increasing mlr property in X of the family of densities in (2) when viewed as
a location family (parameter µ) with known σ.

The most important and best known case covered by (2) and (3) is the normal case where (X,U) ∼
Nn+1((µ, 0, . . . , 0), σ2In+1) and f(t) ∝ e−t/2. However, our inference results will also apply to many
other models such as (i) exponential power densities with f(t) ∝ e−αt

p
, p > 0, α > 0, including

Laplace densities arising for p = 1/2; (ii) the Kotz distribution with f(t) ∝ tme−αt, m ∈ (−1/2, 0),
α > 0; as well as for (iii) Student densities with f(t) ∝ (1+t/ν)−(ν+n+1)/2, ν ≥ 1 degrees of freedom.
The Student example illustrates a non-logconcave f (in fact, it is logconvex) which satisfies the
weaker assumptions required here. The Student distributions, which are scale mixtures of normals,
often serve as useful, alternative models to the normal model. Here is an interesting general situation
for which scale mixtures inherit assumption (3).

Lemma 1. A scale mixture of the form f(t) =
∫∞

0
vf0(tv)h(v)dv satisfies assumption (3) as soon

as both f = f0 and f = h satisfy assumption (3).

Proof. See Appendix.

Remark 1. In the Student case above, both f0 (a normal density) and h (a gamma density), are
logconcave and satisfy (3).

Remark 2. We note that model (2) arises for observables Y1, . . . , Yn+1 having joint density

1

σn+1
f

(∑
i(yi − θ)2

σ2

)
,

through an orthogonal transformation (Y1, . . . , Yn+1)→ (X =
√
n Ȳ , U1, . . . , Un), with µ =

√
n θ.

For model (2), (X,S = ‖U‖) is a sufficient statistic with joint density fX,S on R × R+ which we
take as equal to:

sn−1

σn+1
f(

(x− µ)2 + s2

σ2
) . (7)

For the normal model canonical form in (1), we will write the joint density of (X,S) in (7) as
1
σ2φ(x−µ

σ
)h( s

σ
), with

φ(u) = (2π)−1/2e−u
2/2 , and h(v) =

vn−1 e−v
2/2

Γ(n/2) 2n/2−1
. (8)
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2.2. Properties of the Bayes estimators δπl

We proceed with various preliminary results, observations, and illustrations concerning the general-
ized Bayes estimators δπl(X,S) with respect to the improper priors in (6). As previously mentioned,
one can verify that the lower bound on the power l in (6) guarantees that the posterior density
of (µ, σ) is well defined given that (7) is a density. Even with a well defined posterior density, we
further assume, and not necessarly emphasize (mainly in Sections 3,4, and 5), that the pair (f, ρ)
leads to the existence of the Bayes estimator δπl .

We define for m > 0, w ∈ R, z ∈ R,

Bm(w, z) =

∫ ∞
0

∫ vw

−∞
ρ′(u+ c0v + zv) vm f(u2 + v2) du dv , (9)

provided it exists. The function Bm(w, z), as well as some of its properties (see for instance Lemma
4) will play a key role below, namely in the following representation of the Bayes estimator δπl(X,S).

Lemma 2. Under model (7), provided existence of the Bayes estimator δπl, we have δπl(X,S) =
X + c0S + gπl(

X
S

)S, where gπl(y) satisfies, for all y ∈ <, l > −(n− 1),

Bn+l(y, gπl(y)) = 0. (10)

Proof. Writing an estimator as X + c0S + g(X,S), we have that the Bayes estimate δπl(x, s)
minimizes in g(x, s) the expected posterior loss:

E[ρ(
x+ c0s+ g(x, s)− µ

σ
)|(X,S) = (x, s)],

or, equivalently, ∫ ∞
0

∫ ∞
0

ρ(
x+ c0s+ g(x, s)− µ

σ
)
sn−1

σn+1
f(

(x− µ)2 + s2

σ2
)

1

σl+1
dµdσ .

With the change of variables (µ, σ) → (u = (x−µ)
σ

, v = s
σ
), the Bayes estimate δπl(x, s) is seen to

minimize in g(x, s): ∫ ∞
0

∫ vx/s

−∞
ρ(u+ c0v +

v

s
g(x, s))f(u2 + v2) vn+l−1 dudv .

Now, observe that 1
s
g(x, s) depends on (x, s) only through the function y = x/s, which implies that

the estimator δπl(X,S) is of the form X+c0S+gπl(
X
S

)S with gπl(y) minimizing in g(y) the quantity∫ ∞
0

∫ vy

−∞
ρ(u+ c0v + g(y)v) f(u2 + v2) vn+l−1 dudv . (11)

Finally, the result is obtained by differentiation.

We point out that gπl(y) is uniquely determined (Lemma 4), and is a continuous function of y such
that

gπl(y) ≥ −y − c0 for all y ∈ <. (12)
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This must indeed be the case as the Bayes estimates δπl(x, s) are necessarily nonnegative, and
1
s
δπl(x, s) ≥ 0 ⇐⇒ x

s
+ c0 + gπl(

x
s
) ≥ 0. We pursue with an intriguing robustness property,

and alternative representation, of the Bayes estimators δπl for scale invariant Lp loss, and their
asymmetrized versions given by

ρc1,c2(t) = c1 |t|p 1(−∞,0)(t) + c2 |t|p 1[0,∞)(t) , (13)

with p > 0, c1 > 0, and c2 > 0.

Lemma 3. For losses ρc1,c2 as in (13), the Bayes estimators δπl, given in Lemma 2, do not depend
on the underlying model density f provided they exist.

Proof. From (11), we have

c0 + gπl(y) = argminh

∫ ∞
0

∫ V y

−∞
ρc1,c2(u+ hv) f(u2 + v2) vn+l−1 dudv

= argminh

∫ ∞
0

∫ V y

−∞
ρc1,c2(

u

v
+ h) f(u2 + v2) vn+l+p−1 dudv

= argminh

(∫ ∞
0

x(n+l+p−1)/2f(x) dx

) (∫ y

−∞

ρc1,c2(t+ h)

(1 + t2)(n+l+p+1)/2
dt

)
= argminh

∫ y

−∞

ρc1,c2(t+ h)

(1 + t2)(n+l+p+1)/2
dt , (14)

by making use of the homogeneity of ρc1,c2 and the change of variables (u, v)→ (t = u/v, x = u2+v2).
Finally, expression (14) tells us that δπl(x, s) = x+ s(c0 + gπl(x/s)) is independent of f .

This type of property seems to have first been noticed by Maruyama (see Maruyama, 2003; Maruyama
and Strawderman, 2005) in a multivariate setting under L2 loss.

Remark 3. (Minimum risk equivariant estimator)

(a) Proceeding as in the proof of Lemma 2, we obtain the useful representation X + c0(n)S for
the MRE estimator, with the defining equation∫ ∞

0

∫ ∞
−∞

ρ′(u+ c0(m)v) vm f(u2 + v2) du dv = 0 , (15)

for c0(m), m ≥ 1.

(b) A robustness property similar to Lemma 3 (also illustrated in Example 1, part (C) is shared
by the MRE estimators with respect to losses ρc1,c2 and can be established by expanding (5)
showing that

c0 = argminc

∫ ∞
−∞

ρc1,c2(t+ c)

(1 + t2)(n+p+1)/2
dt . (16)

Example 1. (scale invariant L2 loss, scale invariant L1 loss and their asymmetrized versions)

(A) For scale invariant squared error loss with ρ(t) = t2 in (4), the MRE estimator is δ0(X) =
X, provided the second moment of X under (2) exists. Lemma 2 as well as (14) provide
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representations X + gπl(
X
S

)S for the Bayes estimator δπl(X,S); l > −(n− 1). Differentiating
(14) with respect to h, we obtain directly for y ∈ <

gπl(y) = −E[T |T ≤ y] , (17)

where T has density on R proportional to (1 + t2)−(n+l+3)/2. Here the distribution of T is a
multiple of a Student distribution with n + l + 1 degrees of freedom. Equivalently from (10),
we have

Bn+l(y, gπl(y)) = 0

⇐⇒
∫ ∞

0

∫ vy

−∞
(u+ gπl(y)v) vn+l f(u2 + v2) du dv = 0

⇐⇒ gπl(y) = −
∫∞

0

∫ vy
−∞

u
v
vn+l+1 f(u2 + v2) du dv∫∞

0

∫ vy
−∞ vn+l+1 f(u2 + v2) du dv

, (18)

illustrating the fact that the distribution of T arises as the (independent of f) distribution
of the ratio U

V
, with (U, V ) having joint density on R× R+ proportional to vn+l+1f(u2 + v2).

From representation (17), observe that gπl(·) decreases on R with limy→∞ gπl(y) = 0 (since∫∞
−∞ uf(u2 + v2)du = 0 for all v > 0), and hence that gπl(·) is positive, i.e., δπl expands

on the MRE δ0. Such properties are of interest as they indicate that the amplitude of the
expansion δπl(x, s)− δ0(x, s) decreases in x for fixed s, and increases in s for fixed x (in fact
(δπl(x, s) − δ0(x, s))/s increases in s). Such a property resonates back to Katz (1961) where
in the normal case with known σ, the Bayes estimator with respect to a flat prior for µ on
(0,∞) expands X by the amount σ φ(x/σ)

Φ(x/σ)
which decreases in x and increases in σ. Below,

we establish such properties for general convex ρ in Lemma 5, as well as scale invariant Lp

concave loss with p ∈ (0, 1) in Lemma 5. Finally, we point out that alternative expressions
for δπ1 in the above normal case were given by Kubokawa (2004), as well as Marchand, Jafari
Jozani, and Tripathi (2011).

(B) As above, for scale invariant absolute value error loss with ρ(t) = |t| in (4), the MRE estimator
is δ0(X) = X. For l ≥ −(n− 1), δπl(X,S) = X + gπl(

X
S

)S is obtainable from (14) yielding

gπl(y) = −median[T |T ≤ y] = −F−1
n+l(

Fn+l(y)

2
) , (19)

where Fm and F−1
m are the cdf and inverse cdf of T having density on R proportional to

(1 + t2)−(m+2)/2. As above, it is easily seen directly that such a gπl(·) decreases on <, that
limy→∞ gπl(y) = 0, that δπl(x, s) expands once again on δ0(x, s) for all (x, s) ∈ R × R+, and
the difference between these estimates decreases in x/s.

(C) Consider now asymmetrized L1 losses ρc1,c2 in (13) with p = 1. By making use of Remark
3, the MRE estimator is given by δ0(X) = X + c0S, with c0 independent of f , and c0(n) =
−F−1

n ( c2
c1+c2

) and F−1
n the inverse cdf given in part (B). For l ≥ −(n−1), we obtain from (14)

δπl(X,S) = X + c0(n)S + gπl(
X
S

)S with gπl(y) = −c0(n)− F−1
n+l(

c2
c1+c2

Fn+l(y)), thus extending
(19) which occurs for c1 = c2. Observe here that limy→∞ gπl(y) = −c0(n) + c0(n + l), which
does not equal 0 in general, the exception being precisely l = 0, and/or c1 = c2. This property
is more general as seen below in Lemma 5.

We pursue with further properties relative to Bm(·, ·) and gπl (applicable when these quantities
exist).
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Lemma 4. For all a > 0, y ∈ <, l ≥ −(n− 1), and strictly bowled-shaped ρ,

(a) Bn+l(y + a, gπl(y)) > 0;

(b) Bn+l(y, z) is nondecreasing in z whenever ρ is also convex;

(c) limy→∞Bn+l(y, 0) = 0 whenever l = 0; or whenever l 6= 0 and ρ is an even function.

Proof. Part (b) is obvious given the convexity of ρ, while part (c) follows from the given repre-
sentations (15) and (10). For establishing (a), suppose, in order to arrive at a contradiction, that
Bn+l(y + a, gπl(y)) ≤ 0. This would imply C1 ≤ 0, where

C1 =

∫ ∞
0

∫ v(y+a)

vy

ρ′(u+ c0v + gπl(y)v) vn+lf(u2 + v2) du dv .

Now, observe that for (u, v) ∈ I(u, v) = {(u, v) : vy < u < v(y + a)}, we have by (12): u + c0v +
gπl(y)v > vy + c0v + gπl(y)v ≥ 0, implying ρ′(u + c0v + gπl(y)v) > 0, (for such (u, v)′s ∈ I(u, v)).
This renders C1 ≤ 0 impossible, and yields the result.

The strictly decreasing property of gπl that follows in Lemma 5 is a critical property that we will
exploit later for the risk comparisons. We do not know how far the property can be extended
for non-convex ρ, but we do establish here, and use later, such a property for Lp losses and their
asymmetrized versions for the non-convex choices p ∈ (0, 1).

Lemma 5. For l ≥ −(n− 1),

(a) gπl(y) is strictly decreasing in y whenever ρ is convex;

(b) gπl(y) is strictly decreasing in y whenever the loss is ρc1,c2 as in (13) with p ∈ (0, 1).

(c) For strictly bowled-shaped ρ, limy→∞ gπl(y) = −c0(n) + c0(n + l), where c0(m) is defined in
(15). Consequently, limy→∞ gπl(y) = 0 whenever l = 0, or l 6= 0 and ρ is even.

Proof. (a) It suffices to show that we cannot have gπl(y + ε) ≥ gπl(y) for some y ∈ <, ε > 0.
Indeed, if this were the case, it would follow, using defining equation (10) and part (a) of Lemma
4, that

0 = Bn+l(y + ε, gπl(y + ε)) ≥ Bn+l(y + ε, gπl(y)) > 0 ,

which is not possible.

(b) Set s(y) = −c0 − gπl(y) and rewrite representation (14) as

s(y) = argminsE[ρc1,c2(T − s)|T ≤ y], (20)

with T having density proportional to (1+ t2)−(n+l+p+1)/2 on R. Observe that the family of densities
for T |T ≤ y has strictly increasing monotone likelihood ratio in T with parameter y. Now, consider,
for a1 < a2, the function ρc1,c2(t − a1) − ρc1,c2(t − a2), which changes signs once from − to + as a
function of t as t increases on R, and infer that

H(a1, a2, y) = E[ρc1,c2(T − a1)− ρc1,c2(T − a2)]
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has a single root, and changes signs once from − to +, as a function of y, as y increases on R,
given the mlr property (e.g., Lehmann, 1986). Suppose now, in order to arrive at a contradiction
that gπl is not strictly decreasing, i.e., s is not strictly increasing and there exists y2 < y1 such
that a2 = s(y2) ≥ s(y1) = a1. Then, we would have with the definition of s(y) in (20) and the
properties of H: H(s(y1), s(y2), y2) > 0 and H(s(y1), s(y2), y1) < 0 which leads to a contradiction
and establishes the result.

(c) This follows by matching expression (10) when y →∞ with (15).

Remark 4. The above proof in (b) goes through for all losses ρc1,c2, including the convex cases with
p ≥ 1.

The following results permit the ordering of Bayes estimators δπl in terms of the power l in the prior
measure πl in (6).

Lemma 6. For the normal model in (1), y ∈ R, and convex and even ρ, the quantities gπl(y)
decreases in l, l ≥ −(n− 1), provided they exist.

Proof. See Appendix.

Corollary 1. For models (2) with f satisfying assumption (3), y ∈ R, and scale invariant Lp loss
with p > 0, gπl(y) decreases in l, l ≥ −(n− 1), provided existence.

Proof. Lemma 3 tells us that gπl(y) is independent of f and thus matches the normal model gπl(y)
and Lemma 6 tells us that such gπl(y)’s decrease in l whenever ρ is even as for the Lp loss here.

3. Minimax Conditions for general ρ and f

For estimating µ ≥ 0 in (2) or in (7) with unknown σ > 0 under strictly bowled-shaped loss ρ(d−µ
σ

),
we establish here useful sufficient conditions for an estimator δ(X,S) to be minimax. We first
make use of Kubokawa’s IERD technique in Theorem 1. Proposition 1 (below) then extracts a sign
varying condition for minimaxity which will serve as the basis for further analysis for the specific
cases of normal models and general convex ρ in Section 4, and for Lp losses and their asymmetric
versions ρc1,c2 with general f satisfying assumptions (3) in Section 5. Various other technical results
and remarks, including a condition for non-minimaxity with applications, are also introduced in
this section. We consider the following subclass of scale invariant estimators.

Definition 1. C = {δg(X,S) : δg(X,S) = δ0(X,S) + g(X
S

)S, with g absolutely continuous a.e.,
nonincreasing, non-constant, and limt→∞ g(t) = 0}.

These estimators in C expand upon δ0, in view of the restriction µ ≥ 0, include δπ0 and the
generalized Bayes estimators δπl ; l 6= 0, l ≥ −(n − 1); for even ρ as seen by the properties given
in Lemma 5. Under invariant losses as in (4), such estimators will have frequentist risk R(θ, δg)
depending on θ = (µ, σ) only through the maximal invariant λ = µ/σ, and we seek conditions for
which such a risk falls below the constant risk of the MRE estimator δ0 for all λ ≥ 0. As mentioned
above, such improvements will necessarily be minimax estimators since δ0 is minimax. Hereafter, we
will just refer, for the most part, to such improvements as being minimax estimators. The focus is
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largely on the generalized Bayes estimator δπ0 , which will be seen to be minimax for various settings
of (f, ρ) and which provides a benchmark in the sense that estimators δg ∈ C will be minimax for
convex ρ under the simple condition that δg not expand on δ0 as much as δπ0 (Theorem 1, (ii)).
In turn, for various choices of (f, ρ) with ρ even, and by appealing to Lemma 6, these classes of
minimax estimators will contain the generalized Bayes estimators δπl ’s, l > 0. We now pursue with
an intermediate dominance condition.

Theorem 1. For estimating µ in (2) or (7) with µ ≥ 0, σ > 0, an estimator δg ∈ C is minimax,
under strictly bowled shaped loss ρ(d−µ

σ
) whenever either one of the following conditions holds for

all λ ≥ 0 and y ∈ {y : g′(y) < 0}:

(i) ∫ ∞
0

∫ vy−λ

−∞
ρ′(u+ c0v + g(y) v) vn f(u2 + v2) du dv ≤ 0 ,

or

(ii) ρ is convex, g ≤ gπ0 and ψρ(λ, y) ≤ 0, where

ψρ(λ, y) =

∫ ∞
0

∫ vy−λ

−∞
ρ′(u+ c0v + gπ0(y) v) vn f(u2 + v2) du dv .

Proof. With ρ′(·) increasing by the assumption of convexity, condition (ii) implies (i) so that we
only need to establish the sufficiency of (i). Following Kubokawa (1994), write for δg(X,S) ∈ C,

ρ(
x+ c0s− µ

σ
)− ρ(

x+ c0s+ g(x
s
)s− µ

σ
)

= ρ(
x+ c0s+ g(y)s− µ

σ
)|y=∞
y=x/s

=

∫ ∞
x/s

s

σ
ρ′(
x+ c0s+ g(y)s− µ

σ
)g′(y)dy .

Now, use the above expression for the difference in losses to write the difference in risks at θ = (µ, σ)
as:

∆g(θ) = R(θ, δ0)−R(θ, δg)

=
1

σ

∫ ∞
0

s

∫ ∞
−∞
{
∫ ∞
x/s

g′(y)ρ′(
x+ c0s+ g(y)s− µ

σ
) dy}fX,S(x, s) dxds

=

∫
{g′(y)<0}

g′(y){
∫ ∞

0

∫ sy

−∞
ρ′(
x+ c0s+ g(y)s− µ

σ
)
sn

σn+2
f(

(x− µ)2 + s2

σ2
) dxds} dy,(21)

since g′ ≤ 0 a.e. Now, the difference in risks ∆g(θ) will be nonnegative for all θ ∈ Θ as long as for
all y ∈ < such that g′(y) < 0, µ ≥ 0, σ > 0, the bracketed term in (21) is less than or equal than 0,
which is equivalent to (i) with the change of variables (x, s)→ (u = x−µ

σ
, v = s

σ
).

Remark 5. Notice that ψρ(0, y) = Bn(y, gπ0(y)) = 0 for all y ∈ < by virtue of the definition of
gπ0 in (10). Therefore, the risks of δπ0 and δ0 match at the boundary of Θ where µ = 0, σ > 0.
Moreover, if δg expands more that δπ0 (whether or not δg ∈ C), then the risk at the boundary of δg
will exceed that of δ0, hence giving a condition for non-minimaxity. This is so given that

R((0, σ), δg) = E(0,1)(ρ(δg(X,S))) > E(0,1)(ρ(δπ0(X,S))) = R((0, σ), δπ0) = R((0, σ), δ0),
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since δπ0(X,S) ≥ 0 with probability one, and ρ is increasing on (0,∞). As a consequence of the
above, and of Lemma 6 and Corollary 1, we have the following non-minimaxity result.

Corollary 2. For estimating µ in (2) or (7) with µ ≥ 0, σ > 0, the generalized Bayes estimators
δπl with −(n− 1) ≤ l < 0 are not minimax whenever (a) f is normal and ρ is even and convex, or
whenever (b) f satisfies assumption (3) and the loss is invariant Lp with p > 0.

Analogously, we point out that δπ0 does not dominate any other minimax estimator δg ∈ C taking
nonnegative values and satisfying (ii) of Theorem 1 since such δg’s shrink δπ0 and R((0, σ), δg) =
E(0,1)(ρ(δg(X,S))) < E(0,1)(ρ(δπ0(X,S))) = R((0, σ), δπ0) .

Remark 6. A plausible alternative to the MRE estimator δ0 is, of course, its truncation δT0 (X,S) =
max(0, δ0(X,S)). Clearly δT0 improves upon δ0 for bowl shaped ρ, since for all µ ≥ 0, σ > 0,

ρ(
δT0 (x,s)−µ

σ
) ≤ ρ( δ0(x,s)−µ

σ
) for all (x, s) ∈ R × R+, with strict inequality occurring with positive

probability. Moreover, the estimator δT0 belongs to the class C with gT0 (y) = max(0,−y − c0), and
satisfies condition (i) of Theorem 1 with {y : (gT0 )′(y) < 0} = (−∞,−c0) since∫ ∞

0

∫ vy−λ

−∞
ρ′(u+ c0v + gT0 (y) v) vn f(u2 + v2) du dv =

∫ ∞
0

∫ vy−λ

−∞
ρ′(u− vy) vn f(u2 + v2) du dv

≤
∫ ∞

0

∫ vy−λ

−∞
ρ′(−λ) vn f(u2 + v2) du dv

≤ 0 ,

for all λ ≥ 0. Finally, the observations of Remark 5 apply to δT0 , with δT0 a shrinker of δπ0, and δπ0
not dominating δT0 .

With Theorem 1, our attention focuses on the quantity ψρ(λ, y) and testing the condition ψρ(·, ·) ≤ 0
on <+ ×< for various choices of ρ. Now, since

ψρ(0, y) = 0, and lim
λ→∞

ψρ(λ, y) = 0 for all y ∈ <, (22)

ψρ(·, y) cannot be monotone on [0,∞) for any ρ and y ∈ <. We are thus led to analyzing the
behaviour of ∂

∂λ
ψρ(λ, y).

Proposition 1. Let k(y) = y + c0 + gπ0(y), fλ,y(t) be a Lebesgue density on (0,∞) proportional to

tn f

(
λ2(1 + y2) {(t− y

1 + y2
)2 +

1

(1 + y2)2
}
)
,

and

Dρ(λ, y) =

∫ 1/k(y)

0

|ρ′(λ(tk(y)− 1))| fλ,y(t) dt−
∫ ∞

1/k(y)

|ρ′(λ(tk(y)− 1))| fλ,y(t) dt . (23)

Suppose further that Dρ(·, y) changes signs once from − to + on [0,∞) for all y ∈ <. Then, for
estimating µ in (2) or (7) under assumption (3) with µ ≥ 0, σ > 0,

(i) the generalized Bayes estimator δπ0 is minimax, for strictly bowled shaped loss ρ(d−µ
σ

) as long
as δπ0 ∈ C;
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(ii) for δg ∈ C, the condition g ≤ gπ0 is sufficient for δg to be minimax under convex loss ρ(d−µ
σ

).

Proof. We have

∂

∂λ
ψρ(λ, y) = −

∫ ∞
0

ρ′(vk(y)− λ) vn f((vy − λ)2 + v2) dv

∝ −λn+1

∫ ∞
0

ρ′(λtk(y)− λ) fλ,y(t) dt (24)

∝ Dρ(λ, y) . (25)

Therefore, under the given assumptions on the sign changes of Dρ(·, y), we infer that, for all y ∈ <,
ψρ(λ, y) decreases, then increases as λ varies on [0,∞). Finally, the result follows from Theorem 1
and property (22).

Remark 7. (i) From (24), note that ∂
∂λ
ψρ(λ, y)|λ=0+ = −

∫∞
0

ρ′(vk(y)) vn f(v2(y2 + 1)) dv ≤ 0,
since k(·) ≥ 0 from (12), and ρ′(·) ≥ 0 on [0,∞). Hence, Proposition 1’s sign change
assumption on Dρ(·, y) is consistent, for any strictly bowled-shaped ρ, with the behaviour of
ψρ(λ, y) for λ near 0.

(ii) Turning to the families of densities {fλ,y(·), λ ∈ [0,∞), y ∈ <}, they can be shown for y ≤ 0 to
possess a decreasing monotone likelihood ratio (mlr) in T , or equivalently in W = (T − y

y2+1
)2,

with λ viewed as the parameter. Indeed, for λ1 > λ0 ≥ 0, setting αi = λ2
i (y

2 + 1) and
ε = (y2 + 1)−2, we have

fλ1,y(t)

fλ0,y(t)
∝ f(α1(w + ε))

f(α0(w + ε))

which decreases in w, w > y2

(y2+1)2
, given assumption (3).

(iii) In the normal case, the densities fλ,y(·) may described as weighted (by the factor tn) positively
truncated N(y/(1 + y2), 1/(λ2(1 + y2))) densities. They have been recently studied in related
work of Marchand, Jafari Jozani, and Tripathi (2011) where quantiles are estimated under
the restriction µ ≥ 0.

We conclude this section with a very useful technical result.

Lemma 7. Let k(y) = y + c0 + gπ0(y) as in Proposition 1 and let ρ be either an even function, or
more generally satisfy |ρ′(−u)| ≤ |ρ′(u)| for all u > 0. Then we have 1

k(y)
> max{0, y

1+y2
}.

Proof. The positivity of k(y), y ∈ R follows from (12). To establish that 1
k(y)

> y
1+y2

, we assume

the contrary and show that this would imply Dρ(λ, y) ≤ 0 for all λ ≥ 0 which is not possible given
(24) and (25). Indeed, we would have, for all λ ≥ 0, y ∈ <, under the given assumption on ρ

Dρ(λ, y) ≤
∫ 1/k(y)

0

|ρ′(λk(y)(t− 1

k(y)
))| fλ,y(t) dt−

∫ 2/k(y)

1/k(y)

|ρ′(λk(y)(t− 1

k(y)
))| fλ,y(t) dt

≤
∫ 1/k(y)

0

|ρ′(λk(y)(t− 1

k(y)
))| (fλ,y(t)− fλ,y(

2

k(y)
− t)) dt

≤ 0 ,

given that fλ,y(t) ≤ fλ,y(
2

k(y)
− t) for all t ∈ (0, 1/k(y)) whenever 1

k(y)
≤ y

1+y2
.
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The inequality 1
k(y)

> max{0, y
1+y2
} will be exploited as a technical result, but it also provides an

interesting upper bound for the generalized Bayes estimator δπ0 , namely

δπ0(x, s) = s k(
x

s
) < x+

s2

x
, for x > 0,

applicable to all pairs (f, ρ) for which δπ0 exists, with f satisfying (3), ρ satisfying the conditions
of Lemma 7.

4. Minimax results for the normal case

Here is a minimax result applicable in the normal case, to Bayes estimators δπl , and for general
convex losses that are either even functions or, more generally, that penalize the rate of over-
estimation more sharply than the rate of underestimation in the sense

|ρ′(−u)| ≤ ρ′(u) , for all u ≥ 0 . (26)

Theorem 2. For estimating µ in the normal case in (1) with µ ≥ 0, σ > 0 under convex ρ in (4),

(a) the condition g ≤ gπ0 suffices for an estimator δg ∈ C to be minimax in cases where ρ satisfies
condition (26);

(b) such minimax estimators include the generalized Bayes estimator δπ0 under losses ρ satisfying
(26), and all δπl with l > 0 when ρ is even.

Proof. Given that δπl ∈ C for l = 0, and for l > 0 when ρ is even by virtue of Lemma 5, the first
part of (b) is simply a restatement of (a) for the Bayes estimator δπ0 , while the part relating to δπl
with l > 0 follows also from (a) and Lemma 6. The rest of the proof concerns part (a) and we apply
Proposition 1. From (23), we have with the change of variables u = λ(tk(y)− 1):

Dρ(λ, y) =
1

λk(y)
E[−ρ′(U)] ,

where U has density proportional to

fλ,y

(
(
u

λ
+ 1)

1

k(y)

)
1(−λ,∞)(u) . (27)

Since −ρ′ changes signs once from + to − on R, a decreasing in u monotone likelihood ratio property
of the densities in (27) with respect to the parameter λ will suffice to establish that Dρ(λ, y) changes
signs from − to + on [0,∞) as a function of λ ≥ 0 and permit us to apply Proposition 12. Now,
the densities in (27) may be written as

hλ(u) ∝ (
u+ λ

λ
)n f

(
c(u+ λb)2 + dλ2

)
1(−λ,∞)(u) ,

2It is interesting to point out that the arguments here apply as well to strictly-bowled shaped losses. As well,
only a stochastic increasing property for the densities f is required. The monotonicity of gπ0

however is guaranteed
by the convexity of ρ (Lemma 5), which is assumed here.
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with c = (1 + y2)/k2(y), b = 1 − (yk(y)/(1 + y2)), and d = (1 + y2)−1. Notice that we have c > 0
by virtue of (12), and b > 0 by assumption (26) and Lemma 7. Finally, in the normal case with

f(t) = (2π)(n+1)/2e−t/2, tha ratio
hλ1 (u)

hλ0 (u)
is, for λ1 > λ0 ≥ 0, undetermined for u ≤ −λ1, equal to

+∞ for u ∈ (−λ1,−λ0], and otherwise proportional to(
u+ λ1

u+ λ0

)n
e−bcu(λ1−λ0),

which is indeed decreasing in u for u > −λ0, and which establishes the result.

The normal case minimax results of Theorem 2 in part (a), and applicable to the generalized
Bayes estimator δπ0 , were previously obtained for the specific case of scale invariant L2 loss by
Kubokawa (2004). He works directly with the Bayes estimator in Example 1 to derive the key
required analytical properties, namely the monotonicity of gπ0 in Lemma 5 and inequality (i) of
Theorem 1. With Kubokawa’s analysis specific to scale invariant L2 loss, the normal model and
the estimator δπ0 , our unified development above contrasts and provides extensions with respect to
the loss and the prior. In the next section, we give extensions with respect to the model for scale
invariant Lp losses and asymmetric versions.

5. Minimax results for scale invariant Lp losses and their

asymmetric versions

The minimax results of this section are applicable for the wider class of models, or choices of f , in (2)
with assumptions (3). As well, these findings concern scale invariant Lp losses |d−µ

σ
|p, p > 0, and the

more general ρc1,c2 in (13) with c2 ≥ c1. For these losses, (23) reduces to Dρ(λ, y) = pλp−1Eλ[ gy(T ) ],
with T ∼ fλ,y and gy(t) = c1 (1 − tk(y))p−11(0,1/k(y)(t) − c2 (tk(y) − 1)p−11(1/k(y),∞)(t). With this
representation, observe that gy(·) changes sign once on (0,∞) from + to −, so that Eλ[ gy(T ) ]
changes signs from − to + as λ varies on [0,∞), in view of sign change properties and the mlr
property of Remark 7 (ii). Therefore, Dρ(λ, y) varies indeed, as a function of λ ∈ [0,∞) from −
to + as prescribed in Proposition 1 for y ≤ 0 and losses ρc1,c2 . For y > 0 however, the situation is
more delicate. We continue with the non-convex case with p ∈ (0, 1), and this will be followed by
the convex case with p ≥ 1.

Theorem 3. For estimating µ in (2) or (7) with µ ≥ 0, σ > 0 under scale invariant Lp loss |d−µ
σ
|p

with p ∈ (0, 1), the generalized Bayes estimator δπ0 is minimax.

Proof. With δπ0 ∈ C by virtue of Lemma 5, we seek to apply part (i) of Proposition 1 to show
that δπ0 is minimax. For ρ(t) = |t|p with p > 0, we reexpress (23) as

Dρ(λ, y) ∝ E[A(T )B(T )] = E[G(S)] , (28)

with

G(s) = E[A(T )B(T )|S = s], A(t) = tn |t− 1

k(y)
|p−1, B(t) = −1 + 2I(0, 1

k(y)
](t),

T ∼ f

(
λ2(1 + y2) {(t− y

1 + y2
)2 +

1

(1 + y2)2
}
)
, and S =d (T − y

1 + y2
)2 +

1

(1 + y2)2
.
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Given assumption (3), the family of densities of S are seen to have a decreasing monotone likelihood
ratio in S with parameter λ2(1 + y2). So, in accordance with Karlin’s sign change analysis, to prove
the result, it will suffice to show that

G(s) changes signs once from + to − as s varies on (
1

(1 + y2)2
,∞) (29)

to establish that Dρ(λ, y) changes signs as prescribed by Proposition 1. We proceed by treating
separately the cases: (i) 1

k(y)
− y

1+y2
≥ y

1+y2
and (ii) 0 ≤ 1

k(y)
− y

1+y2
≤ y

1+y2
. Here, we have made

use of Lemma 7 to discount the remaining possibility 1
k(y)
− y

1+y2
< 0.

Case (i): Set s0 = ( 1
k(y)
− y

1+y2
)2 + 1

(1+y2)2
. Observe that, whenever s ≥ s0, P (T ≥ 1

k(y)
|S = s) = 1

implying P (B(T ) = −1|S = s) = 1 and G(s) ≤ 0. Similarly, if s < s0, then P (B(T ) = 1|S =
s) = 1 and G(s) ≥ 0. Hence, the above establishes (29) for case (i).

Case (ii): Here, we set s1 = y2

(1+y2)2
+ 1

1+y2
, so that s0 ≤ s1. As in (i), we verify that G(s) ≥ 0 for s ≤ s0,

and G(s) ≤ 0 for s ≥ s1. Finally, for s ∈ (s0, s1), the conditional distribution of T |S = s is
a two-point uniform discrete distribution on {t1, t2}, with t1 = y

1+y2
+ ∆ and t2 = y

1+y2
−∆,

∆ =
√
s− 1

(1+y2)2
.

We hence obtain

G(s) =
1

2
(A(t2)− A(t1))

=
1

2

[
tn2 |t2 −

1

k(y)
|p−1 − tn1 |t1 −

1

k(y)
|p−1

]
< 0 ,

since t2 < t1, n > 1; |t1 − 1
k(y)
| = y

1+y2
− 1

k(y)
+ ∆ < − y

1+y2
+ 1

k(y)
+ ∆ = |t2 − 1

k(y)
|, and p − 1 < 0.

Hence, the above establishes (29) for case (ii) and completes the proof.

Theorem 4. For estimating µ in (2) or (7) under assumptions (3), with µ ≥ 0, σ > 0 and with
loss ρc1,c2, p ≥ 1 and c2 ≥ c1,

(a) the condition g ≤ gπ0 suffices for an estimator δg ∈ C to be minimax;

(b) such minimax estimators include the generalized Bayes estimator δπ0, as well as all generalized
Bayes estimators δπl, l > 0 for the symmetric case c1 = c2.

Proof. For losses ρ as in (13), we may write

Dρ(λ, y) = pλp−1{c1

∫ 1
k(y)

0

hλ,y(w) dw − c2

∫ ∞
1

k(y)

hλ,y(w) dw }, (30)

with hλ,y(·) a probability density function on (0,∞) proportional to |wk(y) − 1|p−1 fλ,y(w). From
this, we see that Dρ(λ, y) is positive iff Pλ(W > 1/k(y)) < c1/(c1 + c2), where W is a random
variable with pdf hλ,y. We show below in Section 7.4 of the Appendix that, whenever 1

k(y)
> y

1+y2
,

the quantity Pλ(W > 1/k(y)) decreases in λ on [0,∞), which means that Dρ(·, y) changes signs
from − to + on [0,∞). The result then follows from Proposition 1 and Lemma 7.
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6. Concluding Remarks

We have considered the problem of estimating a lower bounded location parameter for a wide array
of spherically symmetric location-scale models with a residual vector as represented in model (2),
with unknown scale, and under scale invariant loss as given by (4). With a relative paucity of findings
for such problems when the scale parameter is unknown, we have established the minimaxity of the
generalized Bayes estimator δπ0 for normal models and convex loss, as well for more general models
and scale invariant Lp loss and asymmetric versions ρc1,c2 given in (13). Moreover, we have shown
the role of δπ0 to be pivotal, in the sense that it provides an upper threshold condition necessary
for the minimaxity of many estimators. Other minimax estimators are also obtained, including
generalized Bayes estimators δπl when l > 0 and the loss is convex and even in the above situations.
The results represent extensions of Kubokawa’s results (2004) applicable to scale invariant L2 loss.
Much of the treatment is unified and exploits general features of the model and the loss with incisive
analysis and novel representations. Various other observations are given, including the robustness
of the Bayes estimator δπl with respect to the choice of f in model (2).

As illustrated by Marchand, Jafari Jozani and Tripathi (2011), the normal case improvements pro-
vided for scale invariant L2 loss yield applications for two-sample problems where Yi ∼ N(µi, σ

2); i =
1, 2 with unknown µ1, µ2, σ

2, where the objective is to estimate µ1 (or µ2) with the additional in-
formation of the ordering µ1 ≤ µ2. Despite the advances presented here, minimax extensions to
other strictly bowled-shaped losses, although plausible, are still lacking. Furthermore, numerous
questions remain unanswered such as the admissibility of the above minimax estimators, the in-
vestigation of wider classes of Bayes estimators for minimaxity, and related tests of minimaxity for
multivariate location-scale problems with order restrictions.

7. Appendix

7.1. Proof of Lemma 1

We have
t f ′(t)

f(t)
=

∫∞
0
tv2 f ′0(tv)h(v) dv∫∞

0
v f0(tv)h(v) dv

=

∫∞
0
z f ′0(z)h(z/ t) dz∫∞

0
f0(z)h(z/ t) dz

= Et[
Z f ′0(Z)

f0(Z)
] , (31)

where Z has density proportional to f0(z)h(z/ t) on R+. Now, observe that this scale family of
densities for Z has increasing monotone likelihood ratio in Z, with parameter t, as a consequence
of assumption (3) for h. Finally, the result follows from representation (31) with this monotone

likelihood ratio and since
zf ′0(z)

f0(z)
decreases in z by assumption (3) for f0.

7.2. Proof of Lemma 6

We fix y ∈ R throughout and set c0 = 0 given that ρ is assumed even. First, observe that by
differentiating (10) for the normal case with f(u2+v2) = φ(u)h(v) in (8), we have ∂

∂ l
Bn+l(y, gπl(y) =

0 which implies∫ ∞
0

[
∂

∂ l

{∫ vy

−∞
ρ′(u+ gπl(y)v)φ(u)du

}
+

{∫ vy

−∞
ρ′(u+ gπl(y)v)φ(u)du

}
log(v)]vn+lh(v)dv = 0.
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Hence, given that ρ′ is increasing, to show that gπl(y) decreases in l, it will suffice to show that
I ≥ 0, where

I =

∫ ∞
0

(log v)Ay(v)vn+lh(v)dv, and Ay(v) =

∫ vy

−∞
ρ′(u+ gπl(y)v)φ(u)du . (32)

Now, we will show below that

Ay(v) changes signs once as a function of v from− to + . (33)

Applying Lemma 8, which is stated in the Appendix, with ξ ∼ ξn+l h(ξ) 1(0,∞)(ξ), r(ξ) = log(ξ),
and s(ξ) = Ay(ξ), we infer that I ≥ 0 since E[Ay(ξ)] = 0 given the definition of gπl(y) in (10).
There remains to establish (33), which we proceed to do separating the cases: (i) y ≤ 0 and (ii)
y > 0.

(i) Case y < 0. Let v0 be such that Ay(v0) = 0. Such a value exists since the average value of
Ay(ξ) under the above density for ξ is equal to 0. For ε ≥ 0, we have

Ay(v0 + ε)

Φ((v0 + ε)y)
=

∫ (v0+ε)y

0

ρ′(u− εy + ε(y + gπl(y)) + gπl(y)v0)
φ(u)

Φ((v0 + ε)y)
du

≥
∫ v0y

0

ρ′(u′ + gπl(y)v0)
φ(u′ + εy)

Φ((v0 + ε)y)
du′

= Cy(v0, ε) (say) ,

with equality if and only if ε = 0, given (12) and since ρ′ is increasing. Now, observe that the

ratio of densities (φ(u′+εy)/Φ((v0+ε)y))
φ(u′)/Φ(v0+y)

is increasing in u′, for u′ ∈ (−∞, v0y) and εy < 0. Hence,

this monotone likelihood ratio property implies that Ay(v0+ε)

Φ((v0+ε)y)
≥ Cy(v0, ε) ≥ Cy(v0, 0) = 0, for

ε > 0 and y < 0, yielding (33) for y < 0.

(ii) Case y ≥ 0. As in (i), let v0 be such that Ay(v0) = 0. Using this, as well as property (12), the
nonnegativity of gπl(·) (Lemma 5) (since c0 = 0), and the convexity of ρ, we have for ε > 0:

Ay(v0 + ε) =

∫ (v0+ε)y

−∞
ρ′{u+ (gπl(y))(v0 + ε)}φ(u)du

≥ Ay(v0) +

∫ (v0+ε)y

v0y

ρ′{u+ (gπl(y))v0}φ(u)du

≥ 0

7.3. Lemma used within the proof of Lemma 6.

The following result is well known and its proof is left to the reader.

Lemma 8. Let ξ be a continuous random variable, let r(·) be a continuous and increasing function
on the support of ξ, and let s(·) be a continuous function which changes signs once from − to + at s0

on the support of ξ. Then, we have E[ r(ξ) s(ξ) ] ≥ r(s0)E[s(ξ)], and, in particular if E[s(ξ)] = 0,
then E[ r(ξ) s(ξ) ] ≥ 0.
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7.4. Theorem 4: proof of a monotonocity property for Pλ(W > 1/k(y))

We wish to show that

Pλ(W > 1/k(y)) decreases in α whenever
1

k(y)
> a , (34)

with W having pdf hλ,y(w) on (0,∞) proportional to |wk(y)−1|p−1wn f(α{(w−a)2 + ε}, a = y
1+y2

,

α = λ2(1 + y2), and ε = (y2 + 1)−2. We have

∂

∂λ
Pλ(W > 1/k(y)) = 2λ(1 + y2)

∂

∂α

∫∞
1

k(y)
|wk(y)− 1|p−1wn f(α{(w − a)2 + ε} dw∫∞

0
|wk(y)− 1|p−1wn f(α{(w − a)2 + ε} dw

≤ 0

⇐⇒ E[γ(α{(W − a)2 + ε})|W >
1

k(y)
] ≥ E[γ(α{(W − a)2 + ε})], (35)

under pdf hλ,y, with γ(t) = t |f
′(t)|
f(t)

. Taken together, the following hence form a sufficient condition

for (35) to hold:

(i)E[γ(α{(W − a)2 + ε})|W > 1/k(y)] ≥ E[γ(α{(W − a)2 + ε})|W < a] ,

and (ii) E[γ(α{(W − a)2 + ε})|W > 1/k(y)] ≥ E[γ(α{(W − a)2 + ε})|a ≤ W < 1/k(y)] .

Condition (ii) is immediate since γ(α{(W −a)2 +ε}) increases in (W −a)2 on (a,∞) by assumption
(3). For (i), set Z = |W −a| so that Z|W > 1/k(y) has pdf proportional to |(a+z)k(y)−1|p−1 (a+
z)n f(α(z2 + ε)) 1(1/k(y)−a,∞)(z), while Z|W < a has pdf proportional to |1 − (a − z)k(y)|p−1 (a −
z)n f(α(z2 + ε)) 1(0,a)(z). We thus have the ratio

fZ|W<a(z)

fZ|W>1/k(y)(z)
∝


∞ if z < a, z < 1/k(y)− a;
0 if z ≥ a, z > 1/k(y)− a;(
a−z
a+z

)n ( zk(y)+(1−ak(y))
zk(y)−(1−ak(y))

)p−1

if 0 < z < a, z > 1/k(y)− a.

Since both a−z
a+z

and zk(y)+b
zk(y)−b decrease in z for z < a and z > 1/k(y) − a, with b = 1 − ak(y) > 0

(Lemma 7), we have a decreasing monotone likelihood ratio. Finally, with γ(α(z2 + ε)) increasing
in z > 0 by (3), condition (i) follows and our proof of (34) is complete.
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Marchand, É., and Strawderman, W.E. (2011). A unified minimax result for restricted parameter spaces.

To appear in Bernoulli.
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