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SUMMARY

For normal canonical models, and more generally a vast array of general spherically symmetric location-
scale models with a residual vector, we consider estimating the (univariate) location parameter when it is
lower bounded. We provide conditions for estimators to dominate the benchmark minimax MRE estimator,
and thus be minimax under scale invariant loss. These minimax estimators include the generalized Bayes
estimator with respect to the truncation of the common non-informative prior onto the restricted parameter
space for normal models under general convex symmetric loss, as well as non-normal models under scale
invariant LP loss with p > 0. We cover many other situations when the loss is asymmetric, and where other
generalized Bayes estimators, obtained with different powers of the scale parameter in the prior measure,
are proven to be minimax. We rely on various novel representations, sharp sign change analyses, as well
as capitalize on Kubokawa’s integral expression for risk difference technique. Several other analytical
properties are obtained, including a robustness property of the generalized Bayes estimators above when
the loss is either scale invariant I” or asymmetrized versions. Applications include inference in two-sample
normal model with order constraints on the means.
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1. Introduction

1.1. Preamble

We begin with the normal model in canonical form

X ~ N(u,0?%),8* ~o*x?, independent (n > 1), (1)

which plays a central role in both statistical theory and practice. Consider situations where addi-
tional information on (u, o) is available in terms of parametric restrictions. Bayesian inference in
such restricted parameter space problems does not, conceptually, present any difficulties as both
the prior and the resulting posterior will be adapted and will adapt to the constraints. Assess-
ing the frequentist performance of Bayesian estimators in such situations is, however, considerably
more challenging. Such assessments may include, for instance, testing for minimaxity, an evalua-
tion in comparison to a benchmark procedure such as minimum risk equivariant (MRE) estimator
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or a maximum likelihood estimator (mle), or a study of the frequentist performance of associated
Bayesian confidence intervals.

As an illustration, consider model (1) with known o and the nonnegative mean restriction p > 0.
Despite early discoveries by Katz (1961) and Sacks (1963) that the generalized Bayes estimator
with respect to the flat prior on [0, 00) is minimax and dominates the MRE estimator do(X, S) = X
under squared error loss, despite various generalizations to other models and location invariant
losses (Farrell, 1964; Kubokawa, 2004; Marchand and Strawderman, 2005), no other Bayes minimax
estimators were known until the Maruyama and Iwasaki (2005) findings which provide other Bayes
minimax estimators under squared error loss. Even then, little has been obtained for estimating
pin (1) for ¢ > 0 and unknown o. In this case, Kubokawa (2004) obtained, for scale invariant
squared error loss, a class of minimax improvements on dy, which includes the generalized Bayes
estimator 0., (X, S) with respect the truncation of the usual non-informative prior onto the restricted
parameter space (see expression 6).

Our main motivation for his work has been to generalize and better understand Kubokawa’s findings.
The paper consists of various extensions with respect to the loss, the model, and the prior; which
bypass in a unified way the specific normal case-squared error loss calculations by Kubokawa.
Several new technical aspects have been developed to meet such challenges.

1.2. The problem

As an extension of model (1), we consider spherically symmetric models for an observable (X, U) =
(X,Uy,...,U,) with density proportional to

1 f((x_:u)z—'_ ||u||2)’ (2)

ontl o
and with n > 1, 4 > 0, 0 > 0. The function f : R™ — R* is known, and it assumed throughout

that:

tf'(t)
f(t)
Hereafter, for conciseness, reference to model (2) shall be understood to encompass these assump-
tions on f. Multivariate (for X) versions of (2) have been previously considered, namely in recent
work where robust minimax generalized Bayes estimators of p without constraints are provided

(see Fourdrinier and Strawderman, 2010). Various other features of such models are described in
Section 2.1.

f' <0, and decreases in ¢ for t > 0. (3)

We consider estimating p where it is assumed that (u,0) € © = {(u,0) : 4 > 0,0 > 0} under
location and scale invariant loss

); (4)

with (i) p absolutely continuous a.e., (ii) p strictly bowled shaped with p(t) > p(0) = 0 for all
t € R, p < 0on (—00,0) and p' > 0 on (0,00). We also assume that the pair (f,p) leads
to risk finiteness, namely that there exists a unique minimum risk equivariant estimator for the
unconstrained problem. In such cases, it is given by do(X,S) = X + oS with constant risk
R((p,0),00) = Ep1[p(X + ¢0S)], and with (also see Remark 3)

co = argmin { Eo1[p(X + ¢S]}, (5)
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which is uniquely determined by Fo1[Sp'(X + c0S)] = 0. It is also worth pointing out that ¢y = 0
for symmetric losses p, and consequently that the MRE estimator coincides with the unbiased
estimator X, and is robust with respect to the choice of the underlying model density f. It follows
from Kiefer (1957) that dp is minimax for the unconstrained problem. With the constraint on
i, do(X,S) produces indeed implausible estimates, but it remains minimax (see Marchand and
Strawderman, 2011, and references therein) for general p, and its constant risk thus matches the
minimax risk. The challenge here is to search for good improvements on dy(X, S) that capitalize
on the parametric information, and we focus on potential Bayesian improvements such as the
generalized Bayes estimators d,, with respect to the prior measures

1
m(p,0) = ey Ljo,00) (1)L (0,00)(0) ;1 = —(n = 1); (6)

the lower bound on [ required for the posterior density to be well defined. The class includes the
choice g which is of intrinsic interest as it represents a plausible adaptation, or truncation onto ©
of the right Haar invariant measure 7., with the MRE estimator (also) being the generalized Bayes
estimator d, , with respect to m,,. Moreover, the study of frequentist properties on the restricted
parameter space of Bayesian procedures associated with 7wy or, more generally, truncations of the
right Haar invariant prior measure has recently surfaced in interval estimation problems (Zhang
and Woodroofe, 2003; Marchand and Strawderman, 2006; Marchand et al., 2008).

In Section 2, we further describe features of the underlying model and present various expressions,
properties, and illustrations relative to the Bayes estimators d,,. Namely, we establish a robustness
property, applicable to scale invariant LP loss with p(t) = |t[’, p > 0, and asymmetrized versions as
given in (13), stating that the Bayes estimator 0, does not depend on the underlying f in (2).

The developments of Section 3 make use of Kubokawa’s (1994) IERD (Integral Expression of Risk
Difference) technique to derive classes of dominating (minimax) estimators of do(X,S) = X + ¢S.
With further analyses, which bring into play novel technical arguments of interest on their own,
we provide several instances of (f,p) where these classes of minimax estimators include Bayesian
estimators of the type d,,. Namely, we establish in Sections 4 and 5 that:

(A) The Bayes estimators d,, with [ > 0 dominate d for normal models in (1) and general convex
p’s such that p is even. The estimator d,, also dominates &y for asymmetric p’'s such that
|p'(u)| > |p/(—u)]| for all u > 0;

(B) The Bayes estimators 0, with [ > 0 dominate d, for all (fixed) f in (2) satisfying assumption
(3), and whenever the loss is scale invariant L?, p > 1. The estimator d,, also dominates d
for asymmetrized versions as given in (13) (where |p'(u)| > |p(—u)| for all w > 0 as in (A);

(C) The Bayes estimator d,, dominates &y for all (fixed) f in (2) satisfying assumption (3), and
whenever the loss is scale invariant LP with p € (0,1).

The ensemble of results provide extensions of Kubokawa’s normal case, scale invariant squared error
loss result applicable to d,, in three directions: choice of f, choice of p, and applicability to other
Bayesian estimators d,,’s. Moreover, the developments relative to (A), (B), and (C) are unified and
contain two alternative proofs replicating Kubokawa’s result. It is also notable that (C) involves
the case of a concave in ]d—;H\ (and hence non-convex) loss. Finally, various other observations,
including non-minimaxity results, are also given throughout the exposition and in Section 6.



2. Preliminary results and properties of the estimator o,

2.1. The underlying model

In (2) and (3), the density of (X,U) is unimodal with central location parameter (4,0, ...,0) and
scale parameter . Our parameter of interest is the nonnegative p, or median, of X, while U is
a residual vector. Condition (3) is equivalent to an increasing monotone likelihood ratio (mlr) in
(X — p)? + ||U||* of the family of densities in (2) when viewed as a scale family (parameter o)
with known p. Assumption (3) is, for unimodal and symmetric densities, weaker than both (a) the
logconcavity of f(y) and (b) the logconcavity of f(y?) for y > 0, with (a) implying (b), and with
(b) equivalent to an increasing mlr property in X of the family of densities in (2) when viewed as
a location family (parameter 1) with known o.

The most important and best known case covered by (2) and (3) is the normal case where (X, U) ~
Nui1((1£,0,...,0),0%1,,1) and f(t) oc e7¥/2. However, our inference results will also apply to many
other models such as (i) exponential power densities with f(t) o< e ®" p > 0, a > 0, including
Laplace densities arising for p = 1/2; (ii) the Kotz distribution with f(¢) o< t™e~**, m € (—1/2,0),
o > 0; as well as for (iii) Student densities with f(t) oc (1+¢/v)~¥++1/2 1 > 1 degrees of freedom.
The Student example illustrates a non-logconcave f (in fact, it is logconvex) which satisfies the
weaker assumptions required here. The Student distributions, which are scale mixtures of normals,
often serve as useful, alternative models to the normal model. Here is an interesting general situation
for which scale mixtures inherit assumption (3).

Lemma 1. A scale mizture of the form f(t) = [°vfo(tv)h(v)dv satisfies assumption (3) as soon
as both f = fo and f = h satisfy assumption (3).
Proof. See Appendix.

Remark 1. In the Student case above, both fy (a normal density) and h (a gamma density), are
logconcave and satisfy (3).

Remark 2. We note that model (2) arises for observables Y1, ..., Y, 1 having joint density

1 ¥ (Zi(yi2_ 9)2> ’

O—n+1 o

through an orthogonal transformation (Y1,...,Yne1) — (X = /nY, Uy, ..., U,), with p = /n 6.

For model (2), (X, S = ||U]|) is a sufficient statistic with joint density fx ¢ on R x R* which we

take as equal to:
s (x—p)? + 82
b 2 ) (7)

UnJrl o

For the normal model canonical form in (1), we will write the joint density of (X,S) in (7) as
() h(3), with
n—1 ,—v2/2

o(u) = (27) Y2 %% and h(v) = W (8)



2.2. Properties of the Bayes estimators 9,

We proceed with various preliminary results, observations, and illustrations concerning the general-
ized Bayes estimators 6, (X, S) with respect to the improper priors in (6). As previously mentioned,
one can verify that the lower bound on the power [ in (6) guarantees that the posterior density
of (u,0) is well defined given that (7) is a density. Even with a well defined posterior density, we
further assume, and not necessarly emphasize (mainly in Sections 3,4, and 5), that the pair (f, p)
leads to the existence of the Bayes estimator dy,.

We define for m > 0,w € R,z € R,
Bn(w,z) = / / P (u+ cov + zv)v™ f(u® +v?) dudv, (9)
0 —00

provided it exists. The function B,,(w, z), as well as some of its properties (see for instance Lemma
4) will play a key role below, namely in the following representation of the Bayes estimator 0, (X, S).

Lemma 2. Under model (7), provided ezistence of the Bayes estimator d,,, we have §,,(X,S) =
X + oS + gn, (5)S, where g, (y) satisfies, for ally € R, I > —(n—1),

Bi(y, 9 (y)) = 0. (10)

Proof. Writing an estimator as X + ¢oS + g(X,S), we have that the Bayes estimate 0, (z,s)
minimizes in g(z, s) the expected posterior loss:

T+ cos+g(x,s) — p
o

Elp( (X, 5) = (2, )],

or, equivalently,

[ x+cs+g(r,s)—p s (x—p)P+sE 1
| [ o e dudo
o Jo

ontl o2 )O-H-l

With the change of variables (u,0) — (u = &= ¢ = 2), the Bayes estimate dr,(z, s) is seen to
minimize in g(x, s):

oo pux/s
/ / p(u + cov + Sg(x, ) f(u? 4+ v?) v dudv
0 —o0

Now, observe that % g(z, s) depends on (z, s) only through the function y = x/s, which implies that
the estimator d, (X, S) is of the form X + ¢S+ gr, (%) S with g, (y) minimizing in g(y) the quantity

/ Oo / " plut o+ gu)v) £ + 0?) " dud. (11)
0 —00

Finally, the result is obtained by differentiation. O

We point out that g, (y) is uniquely determined (Lemma 4), and is a continuous function of y such
that
gm(y) > —Yy—0Co for all y e . (12)



This must indeed be the case as the Bayes estimates 0, (z,s) are necessarily nonnegative, and
%(LU (,8) > 0 <= % +co+ gr(%) > 0. We pursue with an intriguing robustness property,
and alternative representation, of the Bayes estimators 0, for scale invariant L” loss, and their
asymmetrized versions given by

Pei,ca (t) = |t|p 1(—00,0) (t) + C |t|p ]-[0,00) (t) ’ (13)
with p > 0, ¢; > 0, and ¢ > 0.

Lemma 3. For losses pe, ¢, as in (13), the Bayes estimators 0r,, given in Lemma 2, do not depend
on the underlying model density f provided they exist.

Proof. From (11), we have
[e%S) Vy
Co + 9m (y) = argminh / / Pei ez (u + hU) f(u2 + U2> Un+l_1 dudv
0 —o0

00 Vy
- argmmh/ / Pera(— + ) f(u? + 02 0" dudu
0 —00 v

o0 Y h
. . (n+1+p—1)/2 Perc (t i )
= argmin, (/0 z g f(z) dx) </ (1+ 7152)2(n+l+p+1)/2 di

y
. . Peiyea (t + h)
= argmin, /OO (1 + 12)(n+l4p+1)/2 dt, (14)

by making use of the homogeneity of p., ., and the change of variables (u,v) — (t = u/v, z = u*+v?).
Finally, expression (14) tells us that d,,(z,s) =  + s(co + gr,(/s)) is independent of f. O

This type of property seems to have first been noticed by Maruyama (see Maruyama, 2003; Maruyama
and Strawderman, 2005) in a multivariate setting under L? loss.

Remark 3. (Minimum risk equivariant estimator)

(a) Proceeding as in the proof of Lemma 2, we obtain the useful representation X + co(n)S for
the MRE estimator, with the defining equation

/Ooo /Z 5+ co(m)o) v™ F(u® + v?) dudy = 0, (15)

for co(m), m > 1.

(b) A robustness property similar to Lemma 3 (also illustrated in Example 1, part (C) is shared
by the MRE estimators with respect to losses pe, ., and can be established by expanding (5)

showing that
_ . > p61,02 (t + C)
co = argmin, /_oo [+ £2) 2 dt. (16)

Example 1. (scale invariant L* loss, scale invariant L' loss and their asymmetrized versions)

(A) For scale invariant squared error loss with p(t) = t* in (4), the MRE estimator is 6o(X) =
X, provided the second moment of X under (2) exists. Lemma 2 as well as (14) provide
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representations X + g, (%)S for the Bayes estimator 6, (X,S); > —(n— 1). Differentiating
(14) with respect to h, we obtain directly for y € R

9m(y) = —E[T|T <y, (17)

where T has density on R proportional to (1 + t2)~("+43)/2 Here the distribution of T is a
multiple of a Student distribution with n + 1+ 1 degrees of freedom. Equivalently from (10),
we have

7L+l gﬂ'l - O
vy
= / / (U + g, (y)v) 0" f(u? +0?) dudv =0

S [ et f(u? 4 0%) dudo 8
fo ffzo pnti+l f(u2 s )du dv ( )

— Im (y) ==

illustrating the fact that the distribution of T arises as the (independent of f) distribution
of the ratio &, with (U,V') having joint density on R x R proportional to v" ™! f(u® + v?).
From representation (17), observe that g, (-) decreases on R with lim,_, gr,(y) = 0 (since
ffooo uf(u? + v¥)du = 0 for all v > 0), and hence that g, (-) is positive, i.e., 6, expands
on the MRE &y. Such properties are of interest as they indicate that the amplitude of the
expansion O, (x,s) — do(x, s) decreases in x for fired s, and increases in s for fived x (in fact
(0, (x,8) — do(x,s))/s increases in s). Such a property resonates back to Katz (1961) where
in the normal case with known o, the Bayes estimator with respect to a flat prior for p on
(0,00) ezpands X by the amount a% which decreases in x and increases in o. Below,
we establish such properties for general convex p in Lemma 5, as well as scale invariant LP
concave loss with p € (0,1) in Lemma 5. Finally, we point out that alternative expressions
for 6., in the above normal case were given by Kubokawa (2004), as well as Marchand, Jafari
Jozani, and Tripathi (2011).

(B) As above, for scale invariant absolute value error loss with p(t) = |t| in (4), the MRE estimator
is 6p(X) = X. Forl> —(n—1), 05,(X,5) = X + gx,(5)S is obtainable from (14) yielding

() = —median(T|T < o] = ~ (7). (19)

where F,, and F.' are the cdf and inverse cdf of T having density on R proportional to
(14 12)~m+2/2 " As above, it is easily seen directly that such a g,(-) decreases on R, that
limy o0 gr,(y) = 0, that 6, (z,s) expands once again on do(z,s) for all (z,s) € R x R, and
the difference between these estimates decreases in x/s.

(C) Consider now asymmetrized L losses pe, o, in (13) with p = 1. By making use of Remark
3, the MRE estimator is given by 0o(X) = X + oS, with ¢y independent of f, and cy(n) =
—ijl(ClcTQCQ) and F; ' the inverse cdf given in part (B). Forl > —(n—1), we obtain from (14)
0r (X, 8) = X 4 co(n)S + gr, ()5 with gz, (y) = —co(n) — F;ﬁl(chQCQFnH(y)), thus extending
(19) which occurs for ¢ = co. Observe here that lim,_,o gr,(y) = —co(n) + co(n + 1), which
does not equal 0 in general, the exception being precisely | = 0, and/or ¢y = co. This property

1s more general as seen below in Lemma 5.

We pursue with further properties relative to By, (-,-) and g, (applicable when these quantities
exist).



Lemma 4. For alla >0,y e R, | > —(n—1), and strictly bowled-shaped p,

(a) Bn-‘rl(y + Qa, gr, (y)) > 07'
(b) Bnyi(y, 2) is nondecreasing in z whenever p is also convez;

(c) limy oo Bnyi(y,0) = 0 whenever | = 0; or whenever | # 0 and p is an even function.

Proof. Part (b) is obvious given the convexity of p, while part (c) follows from the given repre-
sentations (15) and (10). For establishing (a), suppose, in order to arrive at a contradiction, that
Byii(y + a, gr,(y)) < 0. This would imply Cy < 0, where

o puly+a)
C, = / / P (u+ cov + gm, (y)v) V" f (U 4 0?) dudv .
0 vy

Now, observe that for (u,v) € I(u,v) = {(u,v) : vy < u < v(y+ a)}, we have by (12): u + cov +
gm (Y)v > vy + cov + gr,(y)v > 0, implying p'(u + cov + gr,(y)v) > 0, (for such (u,v)’s € I(u,v)).
This renders C; < 0 impossible, and yields the result. O

The strictly decreasing property of g, that follows in Lemma 5 is a critical property that we will
exploit later for the risk comparisons. We do not know how far the property can be extended
for non-convex p, but we do establish here, and use later, such a property for L, losses and their
asymmetrized versions for the non-convex choices p € (0, 1).

Lemma 5. Forl > —(n—1),

(a) gr,(y) is strictly decreasing in y whenever p is convex;
(b) gr,(y) is strictly decreasing in y whenever the loss is pe, ¢, as in (13) with p € (0,1).

(c) For strictly bowled-shaped p, lim, o gr,(y) = —co(n) + co(n + 1), where co(m) is defined in
(15). Consequently, lim,_, g, (y) = 0 whenever | =0, orl # 0 and p is even.

Proof. (a) It suffices to show that we cannot have g, (y + €) > g, (y) for some y € R, € > 0.
Indeed, if this were the case, it would follow, using defining equation (10) and part (a) of Lemma
4, that

0=Bhuy+egny+e)>Buuly+egn(y) >0,

which is not possible.

(b) Set s(y) = —cy — gr,(y) and rewrite representation (14) as

s(y) = argmin F[p, ,(T — s)|T < y], (20)

with 7" having density proportional to (14 ¢2)~("*++P+1/2 on R. Observe that the family of densities
for T|T < y has strictly increasing monotone likelihood ratio in 7" with parameter y. Now, consider,
for a; < aq, the function pe, ¢, (t — a1) — pe, e, (t — az), which changes signs once from — to + as a
function of ¢ as t increases on R, and infer that

H(ala az;, y) = E[p01762 (T - al) = Peier (T - a2)]
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has a single root, and changes signs once from — to +, as a function of y, as y increases on R,
given the mlr property (e.g., Lehmann, 1986). Suppose now, in order to arrive at a contradiction
that g, is not strictly decreasing, i.e., s is not strictly increasing and there exists y» < y; such
that as = s(y2) > s(y1) = a1. Then, we would have with the definition of s(y) in (20) and the
properties of H: H(s(y1),s(y2),y2) > 0 and H(s(y1), s(y2),y1) < 0 which leads to a contradiction
and establishes the result.

(c) This follows by matching expression (10) when y — oo with (15). O

Remark 4. The above proof in (b) goes through for all losses pe, ,, including the convex cases with
p=>1

The following results permit the ordering of Bayes estimators d,, in terms of the power [ in the prior
measure 7 in (6).

Lemma 6. For the normal model in (1), y € R, and convex and even p, the quantities g, (y)
decreases in l, | > —(n — 1), provided they ezist.

Proof. See Appendix.

Corollary 1. For models (2) with f satisfying assumption (3), y € R, and scale invariant LP loss
with p > 0, g, (y) decreases inl, | > —(n — 1), provided ezistence.

Proof. Lemma 3 tells us that g, (y) is independent of f and thus matches the normal model g, (y)
and Lemma 6 tells us that such g,,(y)’s decrease in [ whenever p is even as for the L? loss here. [

3. Minimax Conditions for general p and f

For estimating 4 > 0 in (2) or in (7) with unknown ¢ > 0 under strictly bowled-shaped loss p(djT“),
we establish here useful sufficient conditions for an estimator §(X,S) to be minimax. We first
make use of Kubokawa’s IERD technique in Theorem 1. Proposition 1 (below) then extracts a sign
varying condition for minimaxity which will serve as the basis for further analysis for the specific
cases of normal models and general convex p in Section 4, and for LP losses and their asymmetric
versions p, ., with general f satisfying assumptions (3) in Section 5. Various other technical results
and remarks, including a condition for non-minimaxity with applications, are also introduced in
this section. We consider the following subclass of scale invariant estimators.

Definition 1. C' = {§,(X,S) : 6,(X,5) = 0o(X,S) + g(%) S, with g absolutely continuous a.e.,
nonincreasing, non-constant, and limy;_,o g(t) = 0}.

These estimators in C' expand upon dp, in view of the restriction p > 0, include é,, and the
generalized Bayes estimators 6,,; [ # 0, [ > —(n — 1); for even p as seen by the properties given
in Lemma 5. Under invariant losses as in (4), such estimators will have frequentist risk R(0,J,)
depending on 6 = (u,0) only through the maximal invariant A = p/o, and we seek conditions for
which such a risk falls below the constant risk of the MRE estimator dq for all A > 0. As mentioned
above, such improvements will necessarily be minimax estimators since dy is minimax. Hereafter, we
will just refer, for the most part, to such improvements as being minimax estimators. The focus is



largely on the generalized Bayes estimator d,,, which will be seen to be minimax for various settings
of (f,p) and which provides a benchmark in the sense that estimators d§, € C' will be minimax for
convex p under the simple condition that d, not expand on dy as much as d,, (Theorem 1, (ii)).
In turn, for various choices of (f,p) with p even, and by appealing to Lemma 6, these classes of
minimax estimators will contain the generalized Bayes estimators d,,’s, [ > 0. We now pursue with
an intermediate dominance condition.

Theorem 1. For estimating p in (2) or (7) with 1 > 0,0 > 0, an estimator §, € C' is minimacz,
under strictly bowled shaped loss p(d%") whenever either one of the following conditions holds for
al A\>0andy e {y: 4 (y) <0}:

(i)
/ / P (u+cov+g(y)v) v" f(u? +v*) dudv <0,
or

(ii) p is convex, g < gr, and ,(A,y) <0, where
»(A, ) / / P (U + cov + guy (y) v) V"™ f(u? + %) du dv .

Proof. With p/(+) increasing by the assumption of convexity, condition (ii) implies (i) so that we
only need to establish the sufficiency of (i). Following Kubokawa (1994), write for ¢,(X,S) € C,

chas - wteosto()s—
P U )

T+ s+ g(Y)s — [y y—oo
= pu ) z=r/s

s ,, x4 cos+ s —
= / —p(—— 9) )g )y
z/s o o

Now, use the above expression for the difference in losses to write the difference in risks at 8 = (p, o)
as:

Ng(0) = R(0,00)—
N / / {//8 95 L +Ug(y) ) dy} fx.s(x,s)dxds

- [t / (s o) miny S @IS )y 21)

o ognht2 o2

since ¢’ < 0 a.e. Now, the difference in risks A,(¢) will be nonnegative for all § € © as long as for
all y € R such that ¢'(y) < 0, u > 0,0 > 0, the bracketed term in (21) is less than or equal than 0,
which is equivalent to (i) with the change of variables (z,s) — (u = =X, v = 2). O

Remark 5. Notice that ¢,(0,y) = B, (Y, 9x,(y)) = 0 for all y € R by virtue of the definition of
gmo 0 (10). Therefore, the risks of 0r, and oy match at the boundary of © where u = 0, o > 0.
Moreover, if §, expands more that 6, (whether or not 6, € C), then the risk at the boundary of o,
will exceed that of &y, hence giving a condition for non-minimaxity. This is so given that

R((0,0),04) = E0,1)(p(04(X, 5))) > E0.1)(p(0x, (X, 5))) = R((0,0), ) = R((0,0), ),
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since 0, (X,S) > 0 with probability one, and p is increasing on (0,00). As a consequence of the
above, and of Lemma 6 and Corollary 1, we have the following non-minimazity result.

Corollary 2. For estimating p in (2) or (7) with p > 0,0 > 0, the generalized Bayes estimators
Or, with —(n — 1) <1 < 0 are not minimaz whenever (a) f is normal and p is even and convez, or
whenever (b) f satisfies assumption (3) and the loss is invariant LP with p > 0.

Analogously, we point out that 6., does not dominate any other minimaz estimator 6, € C' taking
nonnegative values and satisfying (ii) of Theorem 1 since such 6,’s shrink 6, and R((0,0),6,) =

E0,1)(p(04(X, 5))) < E(0.1)(p(0r, (X, 5))) = R((0,0), 0r, ) -

Remark 6. A plausible alternative to the MRE estimator &y is, of course, its truncation 62 (X, S) =

max(0, (X, S)). Clearly 68 improves upon & for bowl shaped p, since for all u > 0,0 > 0,
p(w) < p(%) for all (x,s) € R x RY, with strict inequality occurring with positive
probability. Moreover, the estimator 6% belongs to the class C' with g (y) = max(0, —y — ¢p), and
satisfies condition (i) of Theorem 1 with {y: (¢¢) (y) < 0} = (=00, —cg) since

9] vY—A ) VY—A
/ / P (u+cov+ gt (y)v) v" f(u? +0?) dudv = / / p(u—vy) v" f(u® +v?) du dv
0 —o0 0 —o0

IN

00 vYy—A
/ / P (=) o™ f(u? +v®) du dv
0 —o0
0,

<

for all X > 0. Finally, the observations of Remark 5 apply to 6, with 6t a shrinker of 6.,, and 6,
not dominating o7 .

With Theorem 1, our attention focuses on the quantity ¢,(\, y) and testing the condition ¢,(-,-) <0
on BT x R for various choices of p. Now, since

1,(0,y) =0, and /\lim Y,(\,y) =0for ally € R, (22)

¥,(-,y) cannot be monotone on [0,00) for any p and y € R. We are thus led to analyzing the
behaviour of Z1,(A, ).

Proposition 1. Let k(y) =y + co + 9, (y), fry(t) be a Lebesgue density on (0,00) proportional to

o (RO P - P+ )

Sl (L)
and 1/k(y) .
lwazl wuwwaMAawﬁ—AMJmmw@—nnANMt (23)

Suppose further that D,(-,y) changes signs once from — to + on [0,00) for all y € R. Then, for
estimating p in (2) or (7) under assumption (3) with p > 0,0 > 0,

(i) the generalized Bayes estimator 05, is minimaz, for strictly bowled shaped loss p(d—;’ﬁ) as long
as 0, € C;

11



(ii) for 6, € C, the condition g < g, is sufficient for o, to be minimaz under convez loss p(d?T“).

Proof. We have

Srin) = = [ k) = 0 ey = P+ ) o
o = /0 pIAER(y) = A) fay (1) dt (24)

Therefore, under the given assumptions on the sign changes of D,(-,y), we infer that, for all y € R,
Y,(A, y) decreases, then increases as A varies on [0, 00). Finally, the result follows from Theorem 1
and property (22). O

Remark 7. (i) From (24), note that Z1,(\,y)[rzor = — [;° ¢/ (0k(y)) v" f(W*(y* + 1)) dv < 0,
since k() > 0 from (12), and p'(-) > 0 on [0,00). Hence, Proposition 1’s sign change
assumption on D,(-,y) is consistent, for any strictly bowled-shaped p, with the behaviour of

¥,(\,y) for A near 0.

(ii) Turning to the families of densities { fr4(-), A € [0,00),y € R}, they can be shown fory < 0 to
possess a decreasing monotone likelihood ratio (mlr) in T, or equivalently in W = (T — #)2,
with X\ viewed as the parameter. Indeed, for \y > \g > 0, setting a; = N2(y*> + 1) and
e=(y*+1)"2, we have

fuat)  fon(w+ o)
Prow@) — flao(w +€))
2

which decreases in w, w > (yQyT)Q, given assumption (3).

(iii) In the normal case, the densities fy,(-) may described as weighted (by the factor t™) positively
truncated N(y/(1+ y?),1/(A2(1 + 4?))) densities. They have been recently studied in related
work of Marchand, Jafari Jozani, and Tripathi (2011) where quantiles are estimated under
the restriction p > 0.

We conclude this section with a very useful technical result.

Lemma 7. Let k(y) =y + ¢o + gny (y) as in Proposition 1 and let p be either an even function, or

more generally satisfy |p'(—u)| < |p/(w)| for all w > 0. Then we have @ > max{0, /%5 }.

Proof. The positivity of k(y),y € R follows from (12). To establish that @ > 1157, We assume

the contrary and show that this would imply D,(A,y) < 0 for all A > 0 which is not possible given
(24) and (25). Indeed, we would have, for all A > 0,y € R, under the given assumption on p

D) < [ IOk e = [ ORI~ )]l
A= 0 a Y k(y) /M 1/k(y) P Y k(y) "
1/k(y) ) 1 9
< / 9K = )| (Fralt) = Fralrg — 1) d
< 0,
given that fy,(t) < f,\7y($ —t) for all ¢ € (0,1/k(y)) whenever @ < s O
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The inequality @ > max{0, #} will be exploited as a technical result, but it also provides an
interesting upper bound for the generalized Bayes estimator d,,, namely

T s
Oro(2,8) =sk(=) <x+ —, forz >0,
s T

applicable to all pairs (f, p) for which d,, exists, with f satisfying (3), p satisfying the conditions
of Lemma 7.

4. Minimax results for the normal case

Here is a minimax result applicable in the normal case, to Bayes estimators d,,, and for general
convex losses that are either even functions or, more generally, that penalize the rate of over-
estimation more sharply than the rate of underestimation in the sense

o/ (—u)| < p'(u), forall u>0. (26)

Theorem 2. For estimating p in the normal case in (1) with p > 0,0 > 0 under convez p in (4),

a) the condition g < g, suffices for an estimator 6, € C' to be minimax in cases where p satisfies
9= Gno g p
condition (26);

(b) such minimaz estimators include the generalized Bayes estimator 0., under losses p satisfying
(26), and all 6, with | > 0 when p is even.

Proof. Given that d,, € C for [ = 0, and for [ > 0 when p is even by virtue of Lemma 5, the first
part of (b) is simply a restatement of (a) for the Bayes estimator ¢, while the part relating to o,
with [ > 0 follows also from (a) and Lemma 6. The rest of the proof concerns part (a) and we apply
Proposition 1. From (23), we have with the change of variables u = A(tk(y) — 1):

1
D,(\,y) = ——E[—p'(U)],
where U has density proportional to
P (D ) 100 @) (27)
Ay \ k(y) (=A00) (W) -

Since —p’ changes signs once from + to — on R, a decreasing in « monotone likelihood ratio property
of the densities in (27) with respect to the parameter A will suffice to establish that D,(), y) changes
signs from — to + on [0,00) as a function of A > 0 and permit us to apply Proposition 1. Now,
the densities in (27) may be written as

U+ A
A

2Tt is interesting to point out that the arguments here apply as well to strictly-bowled shaped losses. As well,
only a stochastic increasing property for the densities f is required. The monotonicity of g., however is guaranteed
by the convexity of p (Lemma 5), which is assumed here.

ha(u) o (

" f (c(u + Ab)? + d)\2) L—ao0) (1),
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with ¢ = (1 +4?)/k*(y), b =1 — (yk(y)/(1 + y*)), and d = (1 + y*)~'. Notice that we have ¢ > 0
by virtue of (12), and b > 0 by assumption (26) and Lemma 7. Finally, in the normal case with

f(t) = (2m)" /2742 tha ratio Zilgg is, for \; > A\g > 0, undetermined for u < —\;, equal to
0

+oo for u € (—A1, —\g|, and otherwise proportional to

u+ )\1 " efbcu()\lf)\o)
u —|— )\0 ’

which is indeed decreasing in u for u > —\(, and which establishes the result. O

The normal case minimax results of Theorem 2 in part (a), and applicable to the generalized
Bayes estimator d,,, were previously obtained for the specific case of scale invariant L? loss by
Kubokawa (2004). He works directly with the Bayes estimator in Example 1 to derive the key
required analytical properties, namely the monotonicity of g, in Lemma 5 and inequality (i) of
Theorem 1. With Kubokawa’s analysis specific to scale invariant L? loss, the normal model and
the estimator d,, our unified development above contrasts and provides extensions with respect to
the loss and the prior. In the next section, we give extensions with respect to the model for scale
invariant LP losses and asymmetric versions.

5. Minimax results for scale invariant L? losses and their
asymmetric versions

The minimax results of this section are applicable for the wider class of models, or choices of f, in (2)
with assumptions (3). As well, these findings concern scale invariant L losses |dj7“|p , p >0, and the
more general p,, ., in (13) with cg > ¢;. For these losses, (23) reduces to D,(\,y) = pA?"1E\[g,(T) ],
with T ~ f, and gy(t) =c(1— tk:(y))p_ll(o,l/k(y) (t) — co (th(y) — 1)p_11(1/k(y)7oo)(t). With this
representation, observe that g,(-) changes sign once on (0,00) from + to —, so that E\[g,(7T")]
changes signs from — to + as A varies on [0,00), in view of sign change properties and the mlr
property of Remark 7 (ii). Therefore, D,(),y) varies indeed, as a function of A € [0, 00) from —
to + as prescribed in Proposition 1 for y < 0 and losses p, .,. For y > 0 however, the situation is
more delicate. We continue with the non-convex case with p € (0,1), and this will be followed by
the convex case with p > 1.

Theorem 3. For estimating ju in (2) or (7) with > 0,0 > 0 under scale invariant LP loss |“=£|P
with p € (0,1), the generalized Bayes estimator 6, is minimazx.

Proof. With §,, € C by virtue of Lemma 5, we seek to apply part (i) of Proposition 1 to show
that d,, is minimax. For p(t) = |t|’ with p > 0, we reexpress (23) as

D,(\,y) o< E[A(T) B(T)] = E[G(9)], (28)
with
G(s) = E[A(T) B(T)|S = s|, A(t) =t" |t — ﬁvﬂ—l, B(t) = -1+ zf(oﬁl(t),
T~ f <)\2(1 + ) {(t — . ny)Z + a +1y2)2}> , and S = (T — . fy2)2 + a +1y2)2 .
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Case (i): Set 59 =

Case (ii): Here, we set 51 =

Given assumption (3), the family of densities of S are seen to have a decreasing monotone likelihood
ratio in S with parameter A\*(1+y?). So, in accordance with Karlin’s sign change analysis, to prove
the result, it will suffice to show that

1

o™ .

G(s) changes signs once from + to — as s varies on (

to establish that D,()\,y) changes signs as prescribed by Proposition 1. We proceed by treating
separately the cases: (i) @ - L > and (ii) 0 < ( T < Here, we have made

T+y2 = 1+y2 1+y% = 1+y
use of Lemma 7 to discount the remaining possibility k(y) -3 +y2 < 0.

(@ - #)2 + m Observe that, whenever s > so, P(T > (1y)|S =s) =
implying P(B(T) = —1|S = s) = 1 and G(s) < 0. Similarly, if s < s¢, then P(B(T) = 1|S

s) =1 and G(s) > 0. Hence, the above establishes (29) for case (i).

(1+y T T e 1+y2, so that sp < s1. Asin (i), we verify that G(s) > 0 for s < s,
and G(s) < 0 for s > s;. Finally, for s € (s, s1), the conditional distribution of T'|S = s is

a two-point uniform discrete distribution on {tq,%s}, with t; = # + A and ¢y = # — A,
_ 1
A=,/s— T2 -
We hence obtain
1
Gl) = (Al) — A(h))
1 1 1
= |ty |ta — Pt |ty — P <0,
2 [2 W) ' k(y)’
since ty < t1, n > 1; |[t; — (1) zlf’y k(y)—i—A< 1+y2~|— +A—|t2 | and p — 1 < 0.
Hence, the above establishes (29) for case (ii) and completes the proof. O

Theorem 4. For estimating u in (2) or (7) under assumptions (3), with p > 0,0 > 0 and with
0S5 pey .y, p =1 and c3 > ¢y,

(a) the condition g < g, suffices for an estimator §, € C' to be minimax;

(b) such minimaz estimators include the generalized Bayes estimator §,,, as well as all generalized
Bayes estimators 6,,, | > 0 for the symmetric case c; = cs.

Proof. For losses p as in (13), we may write

1

k(y)

D,(\y) = pA" ey /0 2 By (w) dw — ¢ / by (w) dw}, (30)

with Ay, (-) a probability density function on (0,00) proportional to |wk(y) — 1|P~* fy,(w). From
this, we see that D,(\,y) is positive iff P\(W > 1/k(y)) < ¢1/(c1 + ¢2), where W is a random
variable with pdf hy,. We show below in Section 7.4 of the Appendix that, whenever @ > #,
the quantity Py\(W > 1/k(y)) decreases in A on [0, 00), which means that D,(-,y) changes signs
from — to + on [0,00). The result then follows from Proposition 1 and Lemma 7. O]
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6. Concluding Remarks

We have considered the problem of estimating a lower bounded location parameter for a wide array
of spherically symmetric location-scale models with a residual vector as represented in model (2),
with unknown scale, and under scale invariant loss as given by (4). With a relative paucity of findings
for such problems when the scale parameter is unknown, we have established the minimaxity of the
generalized Bayes estimator 0., for normal models and convex loss, as well for more general models
and scale invariant LP loss and asymmetric versions p,, ., given in (13). Moreover, we have shown
the role of d,, to be pivotal, in the sense that it provides an upper threshold condition necessary
for the minimaxity of many estimators. Other minimax estimators are also obtained, including
generalized Bayes estimators d,, when [ > 0 and the loss is convex and even in the above situations.
The results represent extensions of Kubokawa’s results (2004) applicable to scale invariant L? loss.
Much of the treatment is unified and exploits general features of the model and the loss with incisive
analysis and novel representations. Various other observations are given, including the robustness
of the Bayes estimator d,, with respect to the choice of f in model (2).

As illustrated by Marchand, Jafari Jozani and Tripathi (2011), the normal case improvements pro-
vided for scale invariant L? loss yield applications for two-sample problems where Y; ~ N (ju;,0%);1 =
1,2 with unknown gy, g, 0%, where the objective is to estimate u; (or po) with the additional in-
formation of the ordering p; < po. Despite the advances presented here, minimax extensions to
other strictly bowled-shaped losses, although plausible, are still lacking. Furthermore, numerous
questions remain unanswered such as the admissibility of the above minimax estimators, the in-
vestigation of wider classes of Bayes estimators for minimaxity, and related tests of minimaxity for
multivariate location-scale problems with order restrictions.

7. Appendix

7.1. Proof of Lemma 1

We have
tf’(t) _ fooo tv? fé(tv) h(U) dv o fooozfé(z) h(z/t> dz _ Et[Zf(/)(Z)] (31)

) v f()h(o)ydv [ fol2) h(z/t) dz fo(2)

where Z has density proportional to fo(z)h(z/t) on RT. Now, observe that this scale family of
densities for Z has increasing monotone likelihood ratio in Z, with parameter ¢, as a consequence

of assumption (3) for h. Finally, the result follows from representation (31) with this monotone
2f5(2)
fo(2)

likelihood ratio and since

decreases in z by assumption (3) for fo. O

7.2. Proof of Lemma 6

We fix y € R throughout and set ¢y = 0 given that p is assumed even. First, observe that by
differentiating (10) for the normal case with f(u*+v?) = ¢(u)h(v) in (8), we have & B,1(y, gr,(y) =
0 which implies

[T [ s amtoswant +{ [ gt gmootianf o+t o

—0o0

16



Hence, given that p’ is increasing, to show that g, (y) decreases in [, it will suffice to show that
1 > 0, where

vy

I:/Ooo(logv)Ay(v)vth(v)dv, and A, (v) :/ 0 (w4 gr, (y)0) () du. (32)

—0o0

Now, we will show below that
A,(v) changes signs once as a function of v from — to + . (33)

Applying Lemma 8, which is stated in the Appendix, with & ~ " h(€) 1(0,00)(€), 7(€) = log(§),
and s(§) = A, (), we infer that I > 0 since E[A,(§)] = 0 given the definition of g, (y) in (10).
There remains to establish (33), which we proceed to do separating the cases: (i) y < 0 and (ii)
y > 0.

(i) Case y < 0. Let vy be such that A,(vg) = 0. Such a value exists since the average value of
A, (&) under the above density for € is equal to 0. For € > 0, we have

Ay(vo +¢€)
®((vo + €)y)

¢(u)

(o0 1 )

(vo+e€)y
4 P — ey + ey + gm(¥)) + gm (v)00)
P(u' + ey)

ooy ™

& /ovoyp’(U’+g7rl(y)vo)
= Cy(vo,€) (say),

with equality if and only if € = 0, given (12) and since p’ is increasing. Now, observe that the
(¢(u'+ey)/2((vote)y))
$(u')/®(vo+y)

this monotone likelihood ratio property implies that % > Cy(vo, €) > Cy(vg,0) =0, for
e >0 and y < 0, yielding (33) for y < 0.

ratio of densities is increasing in u/, for v’ € (—o0,voy) and ey < 0. Hence,

(ii) Casey > 0. Asin (i), let vy be such that A,(vy) = 0. Using this, as well as property (12), the
nonnegativity of g, () (Lemma 5) (since ¢y = 0), and the convexity of p, we have for ¢ > 0:

(vo+e)y
@@mf>=t[ §ut (9n(9)) (00 + O} dlu)du

[e.e]

v

(vot+e€)y
Ad%%+/ §{u+ (g ()00} ()

oY

0 [l

Y

7.3. Lemma used within the proof of Lemma 6.

The following result is well known and its proof is left to the reader.

Lemma 8. Let & be a continuous random variable, let v(-) be a continuous and increasing function
on the support of &, and let s(-) be a continuous function which changes signs once from — to + at so
on the support of . Then, we have E[r(€) s(§)] > r(so) E[s(§)], and, in particular if E[s(§)] =0,
then E[7(€) 5(6)] > 0.
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7.4. Theorem 4: proof of a monotonocity property for P\(W > 1/k(y))

We wish to show that

P\(W > 1/k(y)) decreases in « whenever > a, (34)

k(y)
with W having pdf h, ,(w) on (0, 00) proportional to |wk(y) — 1P~ w" f(a{(w—a)*+€}, a =
a=X\(1+9?%),and ¢ = (y* + 1)~2. We have

O o ke — (1 gy 0 S PR I el — @) b b
W > 1/k(y) = (L+y)5- = wk(y) — 1P Lar flaf(w - a + j dw

= Ely(a{(W —a)’ +e})[W > @] > E[y(e{(W —a)* +€})], (35)

under pdf hy,, with y(t) = ¢l ,((f))‘. Taken together, the following hence form a sufficient condition
for (35) to hold:

_y_
1+y2’

DEN(a{(W = a)* + )W > 1/k(y)] = Ely(a{(W — a)* + })|W < d],

and (i) Ely(a{(W —a)* + e})|W > 1/k(y)] > Ey(a{(W —a)* + e})la <W < 1/k(y)].

Condition (ii) is immediate since y(a{(W —a)?+¢}) increases in (W —a)? on (a, 00) by assumption
(3). For (i), set Z = |W —a| so that Z|W > 1/k(y) has pdf proportional to |(a+ 2)k(y) — 1|~ (a+
2)" fla(z* + €)) L /ky)—aco) (2), while Z|W < a has pdf proportional to |1 — (a — 2)k(y)|P~" (a —
2)" f(a(2? 4 €)) 1i,0)(2). We thus have the ratio

00 if z<a,z<1/k(y) —a;
fzw<a(2) 0 if 2 >a,2>1/k(y) — a;
Fziw>1/k()(2) a—z\? (k(y)+(1-ak() \P T

W>1/k(y) (=2) <m> if0<z<a,z>1/k(y) —a.
Since both =% and % decrease in z for z < a and z > 1/k(y) —a, with b = 1 — ak(y) > 0
(Lemma 7), we have a decreasing monotone likelihood ratio. Finally, with vy(a(2% + €)) increasing
in z > 0 by (3), condition (i) follows and our proof of (34) is complete. O
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