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Résumé

La sécurité routiere constitue un enjeu collectif ayant bénéficié des avancées technologiques
réalisées au cours des deux derniéres décennies. C’est dans ce contexte que I’entreprise
montréalaise E-SMART développe des systémes embarqués pour le domaine du transport routier
de marchandises en Amérique du Nord, visant a améliorer la sécurité des usagers ainsi que la
protection des biens. Ces systémes permettent, entre autres, d’immobiliser des véhicules a distance,
de sécuriser les passages sous des hauteurs critiques et de respecter les limites de vitesse en temps
réel grace a un systéme connecté a 1’ordinateur de bord du véhicule. Cependant, E-SMART fait
face a des défis liés a la disponibilité et a I’exactitude des données utilisées dans le module qui
permettant de controler la vitesse. En effet, les bases de données provenant de Here Maps et
OpenStreetMap (OSM) présentent des limites, notamment des données manquantes, inexactes ou
des mises a jour non systématiques. Ces lacunes impactent directement le systeme de limitation de
vitesse, entrainant des restrictions non désirées. Il est donc impératif pour E-SMART d’améliorer
la fiabilité des bases de données utilisées afin de garantir un fonctionnement optimal de ses
systémes et de répondre aux besoins de ses utilisateurs. Le présent projet a permis de tester une
méthodologie dans le but d’extraire des limites de vitesse potentielles d’un réseau routier a partir
d’imagerie satellite. D’apres la littérature scientifique a propos de ce sujet, c¢’est la méthodologie
¢laborée lors du SpaceNet 5 Challenge qui a été retenue. Cette méthode consiste a utiliser un
modele de segmentation sémantique, soit le modele CRESIv2, permettant d’extraire le réseau
routier et de prédire les limites de vitesse associées. La méthode a été appliquée a quatre sites
d’études en Amérique du Nord. Les limites de vitesse prédites ont ét¢ comparées a partir des
données de réseaux routiers provenant de différentes sources en fonction des sites d’é¢tudes (OSM,
E-SMART et la Ville de Sherbrooke). En moyenne, 22 % des vitesses prédites se trouvent dans la
bonne classe de vitesse. Les calculs de MAE et de RMSE ont montré que les vitesses prédites se
trouvent généralement a plus ou moins une classe de vitesse d’étre la classe véritable. La limitation
principale de la méthodologie testée réside dans ’utilisation du modele CRESIV2 qui a été entrainé
a partir d’images satellites a travers le monde. Un mod¢le entrainé strictement en Amérique du

Nord aurait un potentiel accru dans la prédiction des limites de vitesse.

Mots-clés : Apprentissage profond; télédétection; réseau routier; modele de segmentation;
imagerie satellitaire; sécurité routicre
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1. Introduction

1.1. Mise en contexte

La sécurité routiere est un enjeu collectif dont les avancements bénéficient a tous. Les efforts
déployés au cours des deux dernieres décennies afin de rendre le réseau routier plus sir montrent
qu'il a été possible de réduire a la fois le risque d'accident et leur gravité. Au Canada, entre 2003 et
2022, le nombre de collisions rapportées au travers de rapports de police a réduit d'environ 40 %
pour les accidents avec blessures et de 30 % pour les accidents mortels (Statistiques Canada, 2024).
Pour la méme période aux Etats-Unis, en tenant compte de la démographie, le nombre de décés
dus aux accidents de la route a reculé d'environ 13 % (Insurance Institute for Highway Safety,
2022). Malgré ces diminutions importantes, pour certains facteurs de risque ou de gravité, il est
impossible d'exercer un contrdle absolu, et ce méme en accentuant les conséquences prévues par
la loi. II s'agit notamment de facteurs tels que la conduite avec facultés affaiblies (drogues, alcool
et fatigue) et le respect des limites de vitesse (OMS, 2004). Toujours selon les chiffres rapportés
par Statistiques Canada, les décés survenus lors d’accidents de la route en 2022 ayant pour facteurs
contributifs les facultés affaiblies (drogues et alcool) sont établis a 23 % alors que pour la vitesse

on retrouve 21,9 % (Statistiques Canada, 2024).

Néanmoins, les progres technologiques actuels et en voie de développement offrent de nouvelles
perspectives en proposant une assistance a la conduite, voire une conduite autonome a différents
niveaux (Badue ef al., 2021). L’automatisation d’un véhicule est définie en cinq niveaux par la
Society of Automotive Engineers (SAE). Le niveau 0 correspond a la situation ou le conducteur doit
entierement gérer la conduite tandis que le niveau 1 offre une aide a la conduite comme l'alignement
du véhicule dans la voie et le controle adaptatif du régulateur de vitesse. L’automatisation véritable
de la conduite débute au niveau 3 et c'est au niveau 5 que la conduite est entierement prise en charge

par le systéme du véhicule (SAE International, 2021).

Dans ce contexte, I’entreprise E-SMART située a Montréal, ceuvre dans la conception et la
commercialisation d’outils technologiques. Ces outils sont actuellement intégrés dans le domaine
du transport routier de marchandises en Amérique du Nord. Les solutions proposées par 1’entreprise
favorisent la sécurité routicre et la protection des marchandises. Plus spécifiquement, les systémes

actuels permettent entre autres d’immobiliser un véhicule lourd a distance, de sécuriser le véhicule



a I’approche de hauteurs libres comportant un risque de collision et le respect des limites de vitesse

en temps réel.

Cet essai, réalisé en collaboration avec des membres du corps professoral de I'Université de
Sherbrooke et le directeur de recherche et développement de E-SMART, vise a proposer une
solution technique en lien avec le systéme intégré de limitation de vitesse. Ce systéme, connecté a
la pédale d’accélérateur, limite la vitesse en fonction de la position en temps réel du véhicule et du
réseau routier parcouru. Pour que cette fonctionnalité soit opérable, il est primordial pour E-
SMART d’intégrer des données fiables concernant les limites de vitesse du réseau routier afin de

ne pas impacter négativement la conduite de ses utilisateurs.

1.2. Problématique

La problématique rencontrée par l'entreprise E-SMART réside dans la disponibilité et 1'exactitude
des intrants utilisés au sein du systeme de gestion des limites de vitesse. Les bases de données
utilisées dans le systéme permettant de restreindre la vitesse maximale des véhicules lourds
proviennent de I’entreprise Here Maps et de 1’organisme sans but lucratif OpenStreetMap (OSM).
Here Maps propose diverses solutions payantes en lien avec la cartographie routieére. Cependant,
cette solution ne permet pas a elle seule de couvrir 1’étendue de I’Amérique du Nord en ce qui a
trait aux données de limites de vitesse d’autant plus que certaines données ne sont pas exactes.
C’est la raison pour laquelle OSM a été intégrée, soit pour permettre d’¢largir la base de données
et en permettant une comparaison d’attributs. Bien qu’OSM consiste en une base de données
massive de données vectorielles, telles que les empreintes de batiments, les espaces verts et les
routes, l'utilisation de ces données a grande échelle présente certaines lacunes. En effet, ’attribut
de limites de vitesse rattaché aux routes comporte fréquemment une valeur non renseignée. De
plus, certaines routes peuvent étre manquantes ou non représentatives de la réalité du fait des mises
a jour non systématiques. Le caractere collaboratif d'OSM implique également un risque d'erreur
en raison de la qualité variable des contributions. Ainsi, lorsque ces données sont manquantes ou
erronées, le systeme développé par E-SMART en est directement impacté, conduisant a des
restrictions de vitesse maximale non désirées. Il est donc essentiel pour I'entreprise de remédier
aux lacunes rencontrées par 1’utilisation de ces bases de données afin de bénéficier d‘une base de

données cohérente avec le réseau routier actuel.



1.3. Objectifs

L'objectif principal de cet essai vise a établir une preuve de concept mettant en ceuvre une méthode

automatisée d’estimation des limites de vitesse d'un réseau routier a partir d'images satellites.
Les sous objectifs permettant de réaliser 1’objectif principal sont :

1. Déterminer une méthode reproductible;

2. Appliquer la méthodologie sur des cas concrets en Amérique du Nord,

3. Evaluer la précision des limites de vitesse prédites.

2. Cadre théorique

Cette revue de littérature vise a brosser un portrait global des données relatives aux limites de
vitesse afin de mieux cerner la problématique énoncée. La section 2.1 présente le contexte
entourant les limites de vitesse, de leur détermination a leur accessibilité, en passant par leurs
champs d’application. La section 2.2 aborde ’intelligence artificielle, en mettant 1’accent sur
I’apprentissage profond et son utilisation dans le traitement d’images satellites. Enfin, la section
2.3 expose différentes approches existantes pour 1’estimation des limites de vitesse a partir des

données routiéres.

2.1.Données de limites de vitesse

A priori, les limites de vitesse indiquées au sein du réseau routier semblent instinctives. En réalité,
le réseau routier comporte une complexité étroitement liée au contexte géographique et politique,
ce qui rend la généralisation des limites de vitesse excessivement ardue, voire impossible pour une
région aussi étendue que I’Amérique du Nord. C’est I’'une des raisons qui pourraient expliquer
I’absence de couverture des données de limites de vitesse a travers des bases de données ouvertes.
Pourtant, ces données sont une plus-value dans un contexte ou les champs d’applications se

multiplient et s'affinent au fil des ans.

2.1.1. Détermination des limites de vitesse

Plusieurs ¢léments entrent en jeu dans la définition des limitations de vitesse des routes. Cela est
fortement influencé par I’emplacement géographique. D’une part, les limites de vitesse different

d’un pays a un autre, mais aussi entre les divisions administratives législatives qui les composent
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comme les Etats ou les provinces. D’autre part, il s'agit de régles basées en fonction de la classe de

route et de la sécurité routiére.

Au Québec, le réseau routier est principalement composé de trois classes fonctionnelles: le réseau
supérieur, le réseau local et le réseau d’acces aux ressources (MTMDET, 2025 -a). Pour chacune
de ces classes fonctionnelles, des classes de route y sont associées quels que soient I'endroit et ou
une entit¢ administrative gouvernementale est chargée de déterminer les limites de vitesse. Les
deux principales entités administratives sont le ministére des Transports et de la Mobilité durable

(MTMDET) et les municipalités (tableau 1) (MTMDET, 2025 -a).

Tableau 1. Répartition de la charge des classes de routes au Québec

Classe Définition
Routes a la charge du ministére des Transports du Québec
Autoroutes Voie & accés limitée a circulation a haute vitesse ne comportant pas, sauf exception, d'intersection a niveau.

Principaux axes routiers autres que les autoroutes, reliant les agglomérations urbaines importantes OU
Routes nationales | routes touristiques et d'acces a des infrastructures d'envergure nationale ou internationale (aéroports,

traverses maritimes, etc.).

Ces routes relient les agglomérations urbaines secondaires entre elles et entre celles-ci et les villes

Routes régionales

Routes collectrices

Routes d'accés aux
ressources

Routes locales de
niveau 1

Routes locales de
niveau 2

Routes locales de
niveau 3

principales. Elles permettent également l'accés aux infrastructures d'envergure régionale.

Routes liant les agglomérations rurales entre elles et avec les centres urbains a proximité, ou encore les
liaisons secondaires entre petites agglomeérations urbaines.

Ce sont des routes qui permettent l'accés & des ressources forestiéres, miniéres ou & des ouvrages
hydroélectriques dans les régions isolées.

Routes a la charge des municipalités

Elles relient les centres ruraux entre eux.

Elles donnent accés aux propriétés rurales habitées en permanence.

Elles donnent accés & des propriétés non habitées a I'année. Les rues résidentielles des villes font
également partie de cefte classe.

Tableau tiré¢ du MTMDET (2025 -a).

Sur le plan de la sécurité, la présence de risque est prise en considération autant pour le conducteur
que pour les autres usagers de la route ainsi que les individus vulnérables. C’est pourquoi la limite
permise se voit a la baisse lorsqu’il y a un partage de la route avec des usagers tels que les cyclistes
et les piétons, dans une zone de réduction de la distance de visibilité et au sein des zones scolaires

(MTMDET, 2025 -b).



Les limites de vitesse ne sont pas toujours statiques dans le temps. En effet, elles peuvent étre
modifiées dans le cas d’accidents récurrents dans certaines zones ou lorsqu’un ajout routier
nécessite une révision des limites de vitesse. Aussi, certaines limites de vitesse sont variables soit
pour une période de I’année ou un horaire journalier comme c’est le cas pour les zones scolaires
(MTMDET, 2023). Un autre élément a prendre en considération, fluctuant temporellement, est la
modification de la limite de vitesse en présence de chantiers qui affectent le réseau routier. Cela est
di au fait que ces zones temporaires comportent un lot de risque élevé pour les ouvriers, mais aussi
pour les utilisateurs du réseau routier (CNESST, 2022). Par exemple, lorsqu'une autoroute a
plusieurs voies se voit restreinte a une seule voie carrossable, la limite de vitesse fixée dépend de
facteurs comme la largeur de la voie, du nombre d’accotements et la présence d’éléments comme
des glissicres, d’¢éléments visuels, etc (tableau 2). De plus, la présence ou non d’une aire sécurisée
au chantier peut impacter la détermination de la limite de vitesse temporaire (ministére des

Transports du Québec, 2021).

Tableau 2. Vitesses légales temporaires pour une voie de circulation restante

Cas applicable

1.CAa 1.A10 1.C.3

Jr——
oo
L3 hy =

[

0 o oo

(=R =

-
9]
P2

Largeur
de voie

(m)
3.7
3.6
3.5
34
3.3
3.2
3.1
3.0

FPrErEreer
W0 O bW =

80 km/h
80 kmm/h

90 km/h 80 km/h

70 km/h

Tableau tiré du ministére des Transports du Québec (2021).

Les limites de vitesse peuvent aussi varier selon le type d’usager de la route. C’est particulierement
le cas pour les véhicules lourds aux Etats-Unis ou certains Etats comme la Californie peuvent
réduire la limite de vitesse permise de 15 mph comparativement a celle des automobiles (tableau
3) (National Motorists Association, 2024). Au Québec, depuis 2009, les véhicules lourds sont
soumis a une restriction active de 105 km/h, et ce méme pour les véhicules provenant de 1’extérieur

de la province (MTMDET, 2025 -c).



Tableau 3. Etats américains limitant la vitesse maximale des véhicules lourds

: c Véhicule Véhicule
Etats (B-U) | “on) | lourd (mph)
Arkansas 75 70
Californie 70 55
Idaho 75-80 70
Indiana 70 65
Michigan 70-75 65
Montana 80 70
Oregon 65-70 65
Washington 70 60

Tableau tiré de National Motorists Association (2024).

2.1.2. Champs d’application

Utilisées de concert avec le réseau routier ou sans, les limites de vitesse offrent une multitude de
champs d’application. C’est particuliérement le cas avec certains organismes gouvernementaux qui
en bénéficient dans des contextes d'analyse du réseau routier et de mises a jour d’autant plus qu’ils
ont la possibilité tenir des bases de données internes a jour. En termes de sécurité routiere, les
limites de vitesse sont une partie intégrante des études d’aménagement du territoire (ministére des
Transports du Québec, 2015). De plus, les données peuvent servir a simuler le réseau routier pour
évaluer les trajets des utilisateurs, les temps des courses des véhicules d’urgences et les impacts

environnementaux associés (Bonhomme et al., 2016; Othman, 2021).

Les entreprises peuvent aussi tirer profit de cette donnée. En effet, comme les limites de vitesse ne
sont pas totalement renseignées via des bases de données ouvertes, il y a une I’opportunité quant a
les inventorier et d’en faire la commercialisation. L’application principale se trouve dans les
services de cartographie en ligne comme Google Maps et Here Maps fortement utilisés par les
automobilistes. Il peut aussi étre question d’application dans les systemes d’aide a la conduite
comme celui proposé par E-SMART permettant de limiter la vitesse en temps réel. De plus, comme
mentionnés en introduction, les systémes au sein de véhicules autonomes nécessitent d’intégrer les

données de limites de vitesse afin d’€tre en mesure de les respecter.

2.1.3. Disponibilité de la donnée

L attribut de limite de vitesse fait partie intégrante de la donnée du réseau routier puisqu’il est
nécessaire de relier la limite de vitesse a une position géographique ou a un segment de route. Bien

que de nombreuses organisations gouvernementales, a différents niveaux, mettent a disposition des



données actualisées sur le réseau routier, 1’attribut de limite de vitesse demeure majoritairement

absent.

Lorsque ’attribut de limite de vitesse est présent et peut étre obtenu en téléchargeant un fichier de
format géospatial, c’est bien souvent pour une trés fine portion du territoire comme c’est le cas de

la ville de Sherbrooke via un portail Web (Ville de Sherbrooke, 2024)

Certains distributeurs privés offrent la possibilité d'accéder aux données. C’est le cas de Google,
via une interface de programmation d'application (API), qui permet de lancer des requétes accédant
aux métadonnées du réseau routier. Des cofits sont reliés aux requétes et il n’est pas possible de
télécharger le réseau routier enticrement (Google, 2024). Le méme type de solution est proposé par

I’entreprise Here Maps.

Une solution existe pour pallier les cofits et obtenir le réseau routier avec les données de limites de
vitesse, soit 1’utilisation OpenStreetMap (OSM). OSM est une base de données cartographique
collaborative gratuite créée en 2004 (OSM, 2024). Celle-ci permet aux utilisateurs du monde entier
d’éditer la carte numérique afin d’intégrer des éléments comme le réseau de transport ainsi que des
métadonnées associées. Les sources de données sont constituées de traces GPS, d’imageries
acriennes et satellites et de données publiques. La limitation principale quant a I’utilisation des
données d’OSM est qu’elle est incomplete. De plus, les mises a jour ne sont pas systématiques et
les données peuvent comporter des erreurs dues au caractére collaboratif. Les données
d'OpenStreetMap sont accessibles via divers moyens. La maniere la plus simple d’accéder aux
données est d’utiliser directement la cartographie Web qui permet 1’exportation de données selon
une zone définie manuellement. Une autre facon d’acquérir les données est de passer par une API
comme OSM API, OSMnx ou Nominatim API. Certains logiciels permettent 1’extraction des

données d’OSM comme QGIS en utilisant I’extension QuickOSM dans QGIS (Wiki OSM, 2024).

2.2. L’intelligence artificielle

Afin de comprendre 1’apport de 1’intégration de I’intelligence artificielle (IA) dans la prédiction
des limites de vitesse des routes dans une image, il est approprié¢ de fournir une bréve définition
des concepts clés en la matiere. D’abord, le dictionnaire Larousse définit I’intelligence artificielle
comme : « I’ensemble de théories et de techniques mises en ceuvre en vue de réaliser des machines
capables de simuler I’intelligence » (Larousse, 2024). L’IA décrit le domaine global et comprend

des sous-domaines, soit l'apprentissage automatique et 1’apprentissage profond. L’apprentissage
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automatique (Machine Learning) est défini par la capacité d’un systéme a acquérir de I’expérience
afin d’améliorer ses performances lors de I'exécution d’une tache, et ce a partir de données brutes
et sans intervention humaine (Goodfellow et al., 2016). Dans le cas de I’apprentissage profond
(Deep Learning), cette technique est une sous-catégorie de I’apprentissage automatique. La
spécificité technique de 1’apprentissage profond est I’intégration d’un réseau de neurones artificiel
permettant d’accomplir des taches plus complexes. Pour bien synthétiser ces concepts, on peut les
représenter sous forme de schéma, avec plusieurs niveaux, ou le niveau englobant correspond a

I'IA et le niveau le plus profond a I'apprentissage profond (figure 1).

Apprentissage

profond

Exemple :
Autoencodeurs

Exemple :
Régression

Exemple :

Connaissances

de base

Exemple :
MLP

pen profonds

logistique
Apprentissage par
représentation

Apprentissage
automatique

Figure tirée de Goodfellow et al., (2016).
Figure 1. Diagramme de Venn des différentes couches de I’I A a ’apprentissage profond

2.2.1. Généralités en apprentissage profond

Tout d’abord, 1’apprentissage profond est une technique largement utilisée dans diverses
disciplines, notamment pour effectuer des prédictions, traiter le langage ou analyser des images en
vision par ordinateur (Bai, 2022). Ainsi, grace a sa démocratisation, une large variété¢ de mod¢les

est disponible et ceux-ci sont adaptés a tous types de données et selon les objectifs. Par exemple,



les réseaux convolutifs (CNN) sont particuliérement adaptés a 1’analyse des images, permettant
d’extraire automatiquement des caractéristiques visuelles complexes pour des tiches comme la
reconnaissance d’objets ou la segmentation d’images. De leur c6té, les réseaux récurrents (RNN)
et leurs variantes modernes, comme les réseaux de type transformer, sont congus pour traiter des
données séquentielles telles que le texte ou les séries temporelles, ce qui en fait des aides
révolutionnaires en traduction automatique ou en prévision de données. Le choix du modele est

donc une étape importante afin de maximiser le potentiel de cette technique.

Plusieurs concepts font partie de 1’apprentissage profond de sa composition fondamentale aux
diverses €tapes d’utilisation. Le premier élément a considérer pour comprendre cette technique,
sans doute la pierre angulaire, est le réseau de neurones artificiels (RNA). Souvent comparé au
fonctionnement du cerveau humain pour tenter de faciliter sa compréhension, le RNA comprend
des neurones artificiels organisés en couches. On peut représenter la composition globale d’un
réseau de neurones en 3 grandes étapes orchestrées dans des couches distinctes : la couche d’entrée,
les couches cachées et la couche de sortie (figure 2). La couche d’entrée regoit les données qui

seront utilisées pour 1’entrailnement du modele. Par exemple, pour une image, I’entrée serait les

pixels et leur valeur (Hadi ef al., 2023; Sarker, 2021).

Couche Couches Couche en
Dentrite Axonale terminale 3 z % =
" d'entrée cachées sortie
: ,\.l S—— —

Sorties

X
\ Gaine de myéline

/.

Axone myélinisé

-

| | /\,

-C
.@ *0
Entrées - ‘( ) ;O

Figure tirée de Hadi et al., (2023).
Figure 2. Comparaison d’un de neurone biologique a neurone artificiel

Les neurones des couches cachées ont pour role d’extraire des informations pertinentes
(caractéristiques) en appliquant des pondérations aux valeurs des données en entrée pour en
calculer la somme pondérée qui passe a travers une fonction d’activation. La sortie de la fonction
d’activation est envoyée sous forme de signal (information) vers un autre neurone d’une autre

couche s'il y en a d’autres. D’ailleurs, plus le modéle contient de couches de neurones, plus celui-
9



ci sera en mesure d’étre performant lors de problématiques complexes comme la détection d’objet.
Une fois que la derniere couche des couches cachées est atteinte, la couche de sortie pourra fournir
un résultat qui est comparé a la valeur attendue (vérité terrain) a 1’aide d’une fonction de perte ce
qui permet d’obtenir I’erreur de la prédiction du modele. Pour qu’il y ait un apprentissage, ces
étapes sont répétées maintes fois afin d’optimiser les poids des connexions selon 1’erreur obtenue
et grace a des algorithmes d’optimisation. Pour qu’un modéle soit en mesure de prédire
adéquatement, celui-ci a besoin d’une certaine quantité d'exemples diversifiés pour augmenter le

degré de confiance des prédictions produites (Sarker, 2021).

2.2.2. Apprentissage profond en télédétection

Le nombre croissant d'appareils d’acquisition d’images a distance permettent de recueillir de
grandes quantités de données. Cela offre donc de nouvelles perspectives dans de nombreux champs
d’application reliés au domaine de la télédétection. La quantité¢ et la complexité des données
rendent I’intelligence artificielle un atout de taille dans les traitements et les analyses. En effet, les
réseaux de neurones exploités a partir d’ordinateurs performants permettent 1’automatisation des
taches anciennement effectuées a la main ou a I'eeil, en plus de permettre d’effectuer ces taches a
grande échelle. Plus spécifiquement, dans le domaine de I’analyse d’images aéroportées (drone,
aéronef ou satellite), les principales techniques d’apprentissage profond couramment utilisées
concernent la classification d’images, la détection d’objet, la segmentation d’instance, la
segmentation sémantique ainsi que 1’extraction de graphes (Bahl, 2022) (figure 3). Chacune de ces

techniques comporte des spécificités :

e C(lassification d’objet : Détermination de la classe d’une image (ce qui est le plus
représenté);
e Deétection d’objet : Classifier un ou plusieurs objets d’intéréts et déterminer la position de

chacun dans I’image en établissant une boite englobante;

e Segmentation d’instance : Classifier chaque pixel d’un objet, ou I’objet est une entité unique

et séparée des autres d’une méme classe;

e Segmentation sémantique : Classifier chaque pixel de I’image sans nécessairement

différencier les classes;

e Extraction de graphes : Détermination d’un réseau composé de sommets et d’arétes
10
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Comparaison entre la classification, la détection d’objet, la segmentation d’instance et
sémantique et 1’extraction de graphes. Figure tirée de Bahl (2022).

Figure 3. Techniques d’apprentissage profond utilisées analyse d’image

2.3. Estimation des limites de vitesse

Tout d'abord, étant donné que la limite de vitesse dépend en majeur parti du contexte, certains
exemples dans la littérature montrent qu'il est possible de s'appuyer sur cet élément pour calculer
une limite de vitesse probable. Ce contexte peut donc étre représenté a partir de parametres
qualitatifs et quantitatifs. C’est ce qui est présenté dans ’article de Beere (2016), celui-ci estime le
temps d’un trajet donné en estimant la vitesse moyenne de déplacement en réunissant des
parametres comme le nombre de voies, le type de surface et le type de route (tableau 4). Les
données associées aux parametres utilisés dans cet article proviennent de trois sources de données
: d’OSM, d’une couche de données du territoire de la Nouvelle-Z¢lande ainsi que la New Zealand
Open GPS Maps Project (Beere, 2016). Les résultats présentés montrent qu'il a été possible
d'estimer le temps de déplacement avec une marge d'erreur moyenne d'environ 6,41 % (Beere,

2016).

Tableau 4. Parameétres utilisés pour estimer la vitesse moyenne de déplacement

Type de route Vitesse moyenne estimée
Autoroute urbaine 80km/h
Non-urbain, <=deux voies, scellée, routes droites (<1.2 ratio) 80km/h
Non-urbain, une voie, scellée, routes droites (<1.2 ratio) 70km/h
Non-urbain, >= deux voies, scellée, routes sinueuses (>=1.2 ratio) 60km/h
Routes droites métallisées 50km/h
Non-urbain, une voie, scellée, routes sinueuses (>=1.2 ratio) 40km/h
Route urbaine scellée 30km/h
Routes sinueuses métallisées (>=1.2 ratio) 30km/h

Tableau tiré¢ de Beere (2016).
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Lors de la compétition organisée par le SpaceNet 5 Challenge (SN5) en 2019, une méthode a été
développée dans le but de déterminer le chemin le plus court dans un contexte de déplacement
d’urgence. La méthodologie y est présentée par Adam Van Etten dans I’article intitulé : City-Scale
Road Extraction from Satellite Imagery v2: Road Speeds and Travel Times. Plus spécifiquement,
la méthode surnommée CRESIV2 permet de tracer le réseau routier et d’y estimer les limites de
vitesse. Cette méthode repose sur I’extraction automatique du réseau routier a partir d’images
satellites haute résolution. L’extraction y est réalisée a I’aide d’un mode¢le d’apprentissage profond
préentrainé, qui effectue une segmentation sémantique permettant de prédire la classe de limite de

vitesse pour chaque segment de route extrait (Etten, 2020) (figure 4).

(a) Image en entrée (b) Masque multicanal (c) Réseau routier

Figure tirée de Etten (2020).

Figure 4. Extraction des routes et inférences des classes de limites de vitesse a partir d’une
image satellite par ’algorithme CRESIv2

Les données qui ont servi a entralner le modéle sont constituées du réseau routier en format
vectoriel et d’images satellites a haute résolution. Le jeu d’entrainement du réseau routier
comprend les segments de route étiquetés selon des attributs de la taxonomie d’OSM. 1l s'agit du
type de route, du type de surface, du nombre de voies et de la présence de ponts (Etten, 2020). Une
limite de vitesse a été associée pour chaque type de route en fonction de la table des vitesses des
Etats-Unis retrouvée sur OSM (tableau 5). Ensuite, un facteur est appliqué a la limite de vitesse en
fonction de la valeur de certains attributs. Par exemple, si la route n’est pas pavée, la vitesse est

multipliée par 0,75 afin de réduire la vitesse maximale.
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Tableau 5. Classification de limites de vitesse (mph) selon des attributs

Type de route 1 Voie 2 Voies 3+ Voies
Autoroute 55 55 65
Primaire 45 45 55
Secondaire 35 35 45
Tertiaire 30 30 35
Résidentielle 25 25 30
Sans classe 20 20 20
Piste de course  2() 20 20

Tableau tiré de Etten (2020).

Les métriques utilisées pour évaluer la performance de I’algorithme dans I’article sont 1’ Average
Path Length Similarity (APLS) et la map topology (TOPO). L’APLS et le TOPO permettent de
comparer le réseau résultant du modele a un réseau faisant office de vérité terrain a partir d’un
calcul déterminant une valeur variant entre 0 (aucune similarité) et 1 (trés similaire). Dans le cas
de I’APLS, la métrique sert principalement a évaluer les chemins optimaux entre deux nceuds tandis
que la métrique TOPO sert a évaluer la similarité locale a un endroit précis dans le réseau. Selon
Etten, ces métriques permettent d’évaluer plus efficacement 2 graphes entre eux que les métriques

traditionnelles telles que I’intersection over union (I0U) ou le F1 score.

Les résultats présentés par Etten montrent que 1’algorithme développé est capable d’atteindre un
score de TOPO de 0,63 et d’APLS en fonction de la longueur des segments de routes de 0,81 et en
fonction du temps de trajet de 0,79 a Las Vegas. Cependant, lorsqu’on observe la moyenne en
prenant en compte les différentes villes testées, le TOPO se trouve a 0,51, I’ APLSiongueur 2 0,67 et
I’ APLStemps @ 0,64 (tableau 6) (Etten, 2020). Tout de méme, 1’algorithme CRESIv2 comparé a
d’autres algorithmes du méme type montre qu’il est plus performant en TOPO et en APLS (tableau

7).

Tableau 6. Comparaison des métriques de performances de CRESIv2

Région d’essai

TOPO

Apl-Sle-uglh

APLSI e

Khartoum
Las Vegas
Paris
Shanghai

0.53 £ 0.09
0.63 4 0.02
0.43 £ 0.01
0.45 £+ 0.03

0.64 - 0.10
0.81 £ 0.04
0.66 -1 0.04
0.55 £ 0.13

0.61 £ 0.05
0.79 £ 0.02
0.65 £ 0.02
0.51 £0.11

Total

0.51 £ 0.02

0.67 £+ 0.04

0.64 £ 0.03

Tableau tiré de Etten (2020).
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Tableau 7. Comparaison des performances de CRESIv2 comparées a d’autres algorithmes

Algorithme Google / OSM SpaceNet
(TOPO) (APLSiengh)
DeepRoadMapper | 18] 0.37 0.51"
RoadTracer [3]] 0.43 0.58'
OrientationLearning |4]] - 0.64
CRESIV2 (Ours) 0.53 0.67

Tableau tiré de Etten (2020).

Dans cet essai, il sera question de reprendre la méthodologie élaborée lors du SpaceNet 5
Challenge. D’une part, cette méthode est reproductible par la disponibilit¢ du code de
programmation Python ainsi que le modele préentrainé a partir du site GitHub et du site Web de la
compétition. D’autre part, la méthodologie semble prometteuse afin de répondre aux objectifs

fixés.

3. Matériel et méthodes

Dans la premiere section de ce chapitre sont présentés les différents sites d’études et dans la
seconde section, les données utilisées dans le cadre de I’essai. Dans la troisiéme section, la
méthodologie est détaillée a 1’aide d’un schéma méthodologique et de sections spécifiques aux

¢étapes de la méthode.

3.1. Territoire d’étude

Les quatre sites d’études ou la méthodologie €laborée dans le SpaceNet 5 Challenge est reproduite
se situent en Amérique du Nord (figure 5). Les deux premiers sites se trouvent au Canada dans la
province de Québec, soit dans la ville de Montréal et de Sherbrooke. Ces deux sites d’études ont
¢été sélectionnés en raison de la disponibilité des données de limites de vitesse. Pour les deux sites
d’étude suivants, ils sont localisés aux Etats-Unis, dans deux Etats distincts : a Keasbey, dans le
New Jersey, et a Akron, dans I'Ohio. Ces villes ont été déterminées par 1’entreprise E-SMART
comme étant dans lieux problématiques du fait de I'absence de limitations de vitesse sur une vaste
partie du réseau routier. Chaque site d’étude posséde une superficie de 12 km? mis a part le site

d’étude a Sherbrooke ot la superficie est de 14,5 km? puisque la densité de routes y est plus faible.
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La sélection de ces sites s’appuie sur la présence de certains ouvrages routiers d’intéréts. Ainsi, ces
sites partagent la particularité d’étre composés d’infrastructures routieres diversifiées (échangeurs,
ponts et/ou viaducs) ce qui permettra une comparaison plus précise. D’autre part, les types de
classes de routes les plus fréquentées par les véhicules lourds sont présents dans chacun des sites :
autoroutes, bretelles d'autoroute, routes principales et secondaires. Dans les villes telles que
Montréal et Akron, le réseau routier y est plus important dues a la densité de batiment plus élevée.
En somme, I’intérét de cette sélection de sites est d’observer le comportement du mode¢le au travers

de villes en Amérique du Nord.

Systéme de coordonnées :
WGS84 / Pseudo-Mercator EPSG:3857

Echelles :
Carte principale 1: 20 000 000

Sites d'études: 1:40 000 Carte produite par R

: , Chad Marier
Source des données : Bing Maps  Date: 2024-07-15

Figure 5. Localisation des 4 sites a I’étude en Amérique du Nord

3.2.Données

L’estimation de limites de vitesse pour les 4 sites d’études en Amérique du Nord nécessite
I’utilisation de types de données variées. Il s'agit d’abord de données matricielles, soit de tuiles
d’images satellites de 256 x 256 pixels couvrant les zones d’études (tableau 8). Les tuiles ont été

obtenues a partir de I’API de Microsoft Bing et datent de 2020 a 2023. Ces tuiles possédent 3
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bandes spectrales (RVB) a trés haute résolution, soit de 30 centimétres par pixel. Elles ont une
profondeur de 8 bits et I’angle de prise de vue est au Nadir. Ces tuiles serviront d’intrants au modele

pour procéder a I’extraction du réseau routier et a la prédiction des limites de vitesse associées.

D’autre part, des données vectorielles sont nécessaires pour des fins de comparaison avec la sortie
du modele de prédictions de limites de vitesse. Il s’agit donc des différents réseaux routiers
correspondant aux sites d’étude et possédant un attribut de limite de vitesse et de type de classe de
route pour chacun des segments de route. Ces données ont été rassemblées a partir de trois sources
différentes en fonction du site d’étude (tableau 8). Pour le site d’étude a Montréal, les données
d’OpenStreetMap ont été téléchargées a partir de I’extension QuickOSM disponible dans QGIS
(figure 6). Pour Sherbrooke, la ville dispose d’un portail Web permettant d’y télécharger diftérentes
couches de données, dont le réseau routier comprenant les limites de vitesse pour chaque segment
(figure 6). En ce qui concerne les villes aux Etats-Unis (Akron et Keasbey), les données
proviennent de I’entreprise E-SMART dont la source est aussi OpenStreetMap. Comme mentionné
précédemment, pour certains segments de route dans les données de E-SMART, la limite de vitesse
est manquante. A Keasbey, 34 % des routes présentes dans le jeu de données vectorielles ne

disposent pas de limite de vitesse, tandis qu'a Akron, ce pourcentage est de 27 % (figure 7).

Une donnée nécessaire a la reproduction de la méthode CRESIvV2 élaborée lors du SpaceNet 5
Challenge est le modele de segmentation final. Ceux-ci ont mis a disposition le modéle discuté
dans I’article sous format pth a partir d’un service AWS d’Amazon. Ce modele a été préentrainé a
partir d’images satellites et de réseaux routiers vectoriels étiquetés. Les sites d’études visées dans
I’article concernaient 4 villes a travers le monde. Les images qui ont été utilisées proviennent du

satellite WorldView-3 a une résolution spatiale de 30 cm par pixel (tableau 8).
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Tableau 8. Sources de données utilisées dans le projet

Données Fournisseur Description Date
Images Bing (Maxar) Tuiles d’images satellites provenant de | 2020-2023
satellites Microsoft Bing a une résolution de 30
cm par pixel
Modele de | SpaceNet 5 Modele de segmentation entrainé au | 2019
segmentation | Challenge format pth
Réseau routier | E-SMART Vecteur de routes du site d’étude a | 2024
Akron et Keasbey
Réseau routier | OpenStreetMap | Vecteur de routes du site d’étude a | 2024
Montréal
Reéseau routier | Ville de Vecteur de routes du site d’étude a | 2024
Sherbrooke Sherbrooke

Réseau routier & Montréal =
= Avec limites [1125)
W T S

ge=a Légende
il Réseau routier & Sherbrooke
SRR —— Avec limites [438]

Données du réseau routier pour les Sites d’étude au Canada, a Montréal (a) et a Sherbrooke (b).
Figure 6. Réseaux routiers des sites d’études au Canada
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Légende

Réseau routier & Akron (OH) f T Réseau routier & Keasbey (NJ)
— Avec limite (1745) —_— g —— Avec limites (507)
w— Sans limite (647) ~ : i 0 2 X w— Sans limites (264)

Données du réseau routier pour les Sites d’étude aux Etats-Unis, a Akron (c) et a Keasbey (d).
Figure 7. Réseaux routiers des sites d’études aux Etats-Unis

3.3. Méthodes d’analyse

Dans ce projet, la méthodologie se divise en quatre phases : le prétraitement des données, les
traitements principaux et leurs post-traitements, 1’analyse des prédictions des limites de vitesse,
ainsi que les recommandations et limites du projet (figure 8). Les étapes techniques en lien avec la
méthode CRESIv2 s’effectuent dans un espace Docker, en langage de programmation Python. En
ce qui a trait a la jointure entre les réseaux routiers réels et ceux produits par la méthodologie ainsi
qu’aux calculs des statistiques menant aux résultats, ces étapes ont été réalisées dans un logiciel

SIG, soit avec QGIS.
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Shéma méthodologique
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Schéma méthodologique du projet
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3.3.1. Préparation des données

Tel que mentionné, les imagettes satellites utilisées proviennent de I'API de Bing Maps sous forme
de tuile de 256 x 256 pixels a un agrandissement de niveau 19 ce qui permet d’obtenir une
résolution par pixel de 30 cm (Microsoft, 2019). Pour chaque site d’étude, une coordonnée
géographique est d’abord utilisée afin de télécharger une tuile centrale. Ensuite, les tuiles
environnantes sont acquises en fournissant un nombre équivalent de tuiles en x et en y. Par exemple,
la zone d’étude a Akron en Ohio posseéde 45 tuiles de largeur et de hauteur. Les tuiles sont
regroupées en une mosaique pour former I’image couvrant la zone d’étude. Afin de retrouver une
taille équivalente a celle utilisée pour I’entrainement du modele CRESI, la mosaique est segmentée

en tuiles de 1300 x 1300 pixels (Etten, 2019) (figure 9).

Tuile centrale Grille de téléchargement Mosaique tuilée

¥ S

256 pixels
45tuiles

256 pixels 45 tuiles Tuiles de 1300 pixels

Figure 9. Mosaique des tuiles d’images satellites 256 x 256 pixels et tuilage de 1a mosaique
en images de 1300 x 1300 pixels

A partir de I’étendue des images satellites mosaiquées, les différents réseaux routiers peuvent étre
découpés. De plus, un nettoyage des données vectorielles est effectué¢. En effet, les différents
réseaux routiers contiennent des données autres que des routes ainsi que des types de classe de
route non pertinente au projet tel que des pistes cyclables, voies piétonnes, des stationnements, etc.
Ces entités ont été supprimées puisqu'elles ne serviront pas a la comparaison finale avec la sortie

du modéle.

3.3.2. Extraction des routes et prédiction des limites de vitesse

La méthode employée dans le SpaceNet 5 Challenge permet d’extraire le réseau routier d’une
image satellitaire en plus de déterminer une classe de vitesse pour chacun des segments de route.
Pour ce faire, une segmentation sémantique est effectuée en utilisant un réseau neuronal convolutif

(CNN), soit le modele CRESIv2 préentrainé. Ce modele a été entrainé a partir d’images satellites
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et de réseaux routiers vectoriels de 4 villes a travers le monde, soit Moscou, Mumbai, San Juan et
Dar es Salam (tableau 9). Les images proviennent du satellite WorldView-3 a différents angles hors
nadir en fonction de la ville. Les images possedent 8 bandes spectrales de 16 bits, mais seulement
les canaux RVB a 30 cm de résolution spatiale sont retenus. De plus, les images ont été converties

en 8 bits et segmentées en tuiles de 1300 x 1300 pixels (Etten, 2020).

Tableau 9. Données utilisées a I’entrainement du modéle CRESIv2

. Routes | Aire desimages | Angle nadir
Ville Date (km) (km?) (degré)
Moscou (Russie) 13-02-2018 3,066 1,353 22.4
Mumbai (Inde) 06-01-2018 1,951 1,021 8.6
San Juan (Porto Rico) 05-04-2017 1,139 285 8.4
Dar es Salam (Tanzanie) | - - - -

Tableau tiré de Etten (2020).
Les réseaux routiers utilisés pour I’entrainement ont été étiquetés par 1’équipe du SN3, et ce a partir
d’attributs qualitatifs, soit la classe de route, le type de chaussé, le nombre de voies, le type de
division d’autoroute et la présence ou non de pont. En fonction des valeurs affectées pour chacun

de ces attributs, une classe de limite de vitesse a été déterminée (Etten, 2020).

Dans le contexte de la compétition, une série d'essais visant a maximiser les performances a mené
vers la détermination d’une architecture et de parametres optimaux pour la conception du modele.
Pour ces tests, le score APLStme maximal atteint est de 48.11, obtenu avec un ensemble de 8
modeles : 4 utilisant l'architecture ResNet50 couplée a un encodeur/décodeur UNet et 4 autres
utilisant SE-ResNeXt50 avec un encodeur/décodeur UNet. L’inconvénient de cette composition
d’architectures réside en un temps d'inférence relativement lent de 1,53 km?/min. Le meilleur
compromis entre un score APLSiime élevé et le temps d’inférence le plus rapide consiste en
I’utilisation du modele de base de CRESI, qui utilise I’architecture ResNet34 combinée a un
encodeur/décodeur U-Net. Ce modéle permet d’obtenir un score d’APLStime de 45.35 et un temps
d’inférence de 9.44 km2 / min (tableau 10) (Etten, 2020). Plus spécifiquement, un saut de
connexion est effectu¢ a chaque couche du réseau et un optimisateur Adam est utilisé pour
minimiser la fonction de perte. De plus, la fonction de perte utilisée combine la perte focalisée et
le coefficient de Dice avec une pondération de 75 % pour la perte focalisée et 25 % pour le
coefficient de Dice (Etten, 2020). Dans le cadre de cet essai, le modele de CRESI a été retenu pour

sa précision lors de I’inférence et sa rapidité d’exécution.
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Tableau 10. Résultats des 5 meilleurs modéles lors du SpaceNet 5 Challenge

Classement #Modéles  Modéles de Segmentation RRL=Noe=SCtE Sletna d Inisrerics

(x 100) (km2 / min)
CRES! N/A 1 1 x ResNet34 + UNet 45.35 9.44
(baseline)
XD-XD 1 8 4 x ResNet50 + UNet 48.11 153

4 x SE-ResNeXt50 + UNet

4 x SE-ResNeXt50 +UNet
cannab 2 12 4 x DPN92 +UNet 48.03 0.61
4 x ResNet34 + UNet

6 x InceptionResNetV2 +UNet

selim_sef 3 12 6 x DPN92 + UNet 46.82 0.72
6 x ResNeX101 +UNet

ikibardin 4 15 6 x ResNet50 + FPN 45.77 0.62
3 x SE-ResNeXt50 +UNet

schapke 5 4 4 x ResNet34 + UNet 45.41 3.72

Tableau tir¢ de Etten (2020).

Une fois les tuiles d’images satellites de 1300 x 1300 pixels intégrés au sein du modéle, celui-ci
génere un masque de segmentation comportant 8 canaux. Les 7 premiers canaux représentent une
classe d'intervalle de limite de vitesse en mph a I’exception du dernier canal qui contient
I'agrégation des 7 canaux (figure 10). Le masque 0 contient la classe des routes prédites de 1 a 17,5
mph et le masque 6, les vitesses de 61 a 70 mph. Ensuite, le dernier canal de chacune des tuiles est
regroupé et normalisé afin de correspondre a la taille initiale du site d’étude (figure 11).

Mask Channel 0 . Mask Channel 1 Mask Channel 2 . Mask Channel 3

1000

1200 1200

0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250

Mask Channel 4 Mask Channel 5 Mask Channel 6 Aggregate

400
600
800 800 800

1000 1000 1000

1200 1200 1200

0

250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 750 1000 1250

Les 8 masques de segmentation en sortie du modele CRESI pour une tuile a Akron en Ohio. Les
7 premiers masques représentent les classes d’intervalle de limites de vitesse alors que le dernier
est l'agrégation de ces masques.

Figure 10. Masques de segmentation en sortie du modele CRESIv2
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Figure 11. Segmentation des routes de I’image satellite 8 Akron en Ohio.

L’estimation des limites de vitesse est générée lors des prédictions de routes générées par le modele.
En effet, lorsque le modéle détecte une route a partir des images satellites, une valeur de confiance
de route est attribuée a chacun des pixels de cette route. Une fois le graphe créé, pour chacun des
centroides des arétes, une fenétre de 8 x 8 pixels est analysée pour retrouver le masque d’intervalle
de vitesse qui contient la majorité de pixels de confiance de route. La vitesse est alors assignée au
graphe en prenant la valeur centrale de l'intervalle de vitesse du masque. Par exemple, si la majorité
des pixels de la fenétre se trouve dans le masque 6 (61-70 mph), la limite de vitesse assignée sera

65 mph (Etten, 2020).
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3.3.3. Post-traitements et préparation a 1’analyse

L’inférence, dans le cas de la prédiction des routes, a tendance a occasionner des variations abruptes
et du bruit dans les masques générés. De plus, les fronti¢res y sont parfois irréguliéres. Afin de
pallier ces problémes, un lissage par filtre gaussien avec un noyau de 2 meétres est appliqué, soit
par fenétre d’environ 7 x 7 pixels. De plus, un lissage est appliqué permettant d’éliminer la présence
de trous et de petits objets de moins de 30 m? (figure 12). Le masque raffiné est ensuite transformé
afin que le réseau routier soit sous forme squelettique. Cette forme squelettique réduit le réseau
routier a une taille d’un pixel. De plus, I’image est binarisée de sorte que les valeurs nulles ou
aberrantes soient considérées comme de I’arriere-plan (figure 13). Cette étape est nécessaire pour

la construction du graphe, permettant de stocker les attributs en lien avec le réseau routier.

I

Le masque de segmentation en sortie du modele (a) et le raffinement appliqué (b). Figure tirée de
Etten (2020).

Figure 12. Processus de raffinement du masque de segmentation en sortie du modele
CRESIv2

'
Le masque raffiné (a) et la squelettisation du masque (b). Figure tirée de Etten (2020).

Figure 13. Processus de squelettisation du masque raffiné en sortie du modéle CRESIv2

24



Le graphe produit a partir du squelette du réseau routier s’effectue avec la librairie sknw ce qui
génére une structure graphique NetworkX (figure 14). Cette structure permet la création de
sommets entre les arétes, soit la segmentation du réseau routier. Un nettoyage est effectué afin de

retirer les petites arétes non connectées ainsi que les sous-graphes.

(b)

8

Squelette du masque (a) et transformé en graphe (b). Figure tirée de Etten (2020).

Figure 14. Processus de transformation du Squelette du masque en graphe

Afin de permettre la comparaison des graphes produits par le modele aux différents réseaux routiers
des sites d’études possédant les limites de vitesse réelles, les graphes ont été transformés en un
format de données permettant une visualisation géoréférencée dans un SIG, soit en format Geojson.
Ensuite, pour chaque segment du graphe, une recherche par proximité a une distance maximale de
5 m est effectuée avec le réseau routier du site d’étude correspondant. Ainsi, cela permet de
retrouver une correspondance entre les deux couches de données et d’y joindre I’attribut de la vraie
vitesse provenant des différentes sources de données. Lorsqu’il n’y a pas de correspondance ou
lorsqu’il n’y a pas de vitesse disponible dans les données réelles, les segments du graphe sont tout
simplement retirés. De plus, une vérification manuelle est effectuée lorsqu’un segment du graphe
a plusieurs voisins provenant du réseau routier véritable. Cela permet d’éviter les jointures

multiples et de fausser les résultats.

Dans la couche de données issue de la jointure des deux réseaux routiers, une transformation des
limites de vitesse est effectuée. En effet, comme les limites de vitesse produites par le modele sont
définies en 6 classes distinctes, il est nécessaire de convertir les limites de vitesse des réseaux
routiers véritables afin de les rendre compatibles aux classes de vitesses obtenues en sortie du

modele (tableau 11).
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Tableau 11. Classification des limites de vitesse

\I7i[[r:S|St§s de \I7iltr:SI:§S(mph) de g:nLasrs])e de limites de vitesse du modéle
(km/h) P

<33 <21 17,5

33-48 21-30 25

49-64 31-40 35

65-80 41-50 45

81-96 51-60 55

> 96 > 60 65

4. Résultats

Dans cette section, les résultats obtenus a la suite de 1’extraction des routes et de la prédiction des
limites de vitesse sont d’abord présentés cartographiquement. Ensuite, il est question d’une
évaluation comparative des limites de vitesse entre les réseaux routiers véritables et les réseaux

routiers extraits.

4.1.Réseaux routiers extraits et limites de vitesse

Les différents réseaux routiers extraits a partir du modele de segmentation CRESIvV2 sont
représentés avec I’image satellite qui a servi d’intrant au modele (figures 15 a 18). Au total, le
nombre de segments extraits par zone d’étude est de 2100 a Montréal, 1270 a Sherbrooke, 2500 a
Akron et 1329 a Keasbey. Les vitesses prédites en mph suivent la classification utilisée lors du
SpaceNet 5 Challenge, soit de 17,5 mph a 65 mph. Dans la légende de chacune des figures, le
nombre d’entités par classe de vitesse y est inscrit. On observe que la majeure partie des routes
extraites pour chaque site d’étude se trouvent dans la classe de vitesse 17,5 mph, et au contraire,

une tres faible proportion dans la classe 65 mph (tableau 12).
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Figure 15. Réseau routier extrait et limites de vitesse classifiées a Montréal
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Figure 16. Réseau routier extrait et limites de vitesse classifiées a Sherbrooke
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Figure 17. Réseau routier extrait et limites de vitesse classifiées a Akron
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Figure 18. Réseau routier extrait et limites de vitesse classifiées a Keasbey

Tableau 12. Répartition des routes prédites par classe de vitesse pour chaque site d’étude

Classe de vitesse (mph) | 17,5 | 25 35 45 55 65 | Total
Ville

Montréal (CA) 1150 | 340 | 266 | 173 | 151 | 20 2100
Sherbrooke (CA) 710 | 378 | 86 37 57 2 1270
Akron (E-U) 1512 | 326 | 338 | 171 | 131 | 22 2500
Keasbey (E-U) 622 | 234 | 211 | 68 | 143 | 51 | 1329
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4.2.Evaluation des estimations de limites de vitesse

L’¢évaluation des estimations de limites de vitesse est effectuée a partir des réseaux routiers prédits
par le modele auxquels les réseaux routiers véritables sont joints par la proximité des segments. I1
est important de rappeler que les segments non joints, ainsi que les segments ayant plusieurs
correspondances sont filtrés manuellement afin de conserver ce qui peut étre comparé ce qui
explique une différence dans le nombre total de routes. Pour chaque site d’étude, une matrice de
confusion est calculée afin de mettre en évidence les classes de vitesse correctement prédites en
fonction des classes de vitesse réelles. De plus, un tableau présente le pourcentage de bonnes
prédictions par type de route. Il s’en suit des calculs des métriques MAE et RMSE qui permettent

d’obtenir une évaluation générale de la qualité des prédictions.

Dans le premier site d’étude, a Montréal, 502 routes (32 %) ont été bien classifiées sur un total de
1563 (figure 19). Le modele a particulierement bien performé pour la classe de vitesse 17,5 mph.
En effet, sur les 900 segments de route de cette classe, 417 ont été correctement prédits d’autant
plus que 278 segments se trouvent dans la classe voisine de 25 mph. Ces valeurs bien prédites
proviennent en grande partie de la classe de route résidentielle avec ces 397 routes correctement
inférées ce qui représente 79 % des bonnes prédictions du réseau routier (tableau 13). En ce qui
concerne les autres classes de vitesse, le modele a connu des difficultés puisqu’il a surestimé les
vitesses alors qu’il n’y avait aucune vitesse réelle de la classe 55 mph et la classe 65 mph.

Répartition des classes de vitesse prédites a Mantréal
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55.0
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17.5 25.0 35.0 45.0 55.0 65.0
Classes de vitesses prédites {(mph)

Figure 19. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses
réelles a Montréal
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Tableau 13. Répartition des prédictions de classes de vitesse en fonction du type de route a
Montréal.

Type de route Prédictions | Prédictions %
. Total

incorrectes correctes correctes
Autoroute 46 10 56 18
Lien autoroutier 83 5 88 6
Primaire 56 1 57 2
Résidentielle 454 397 851 47
Secondaire 325 47 372 13
Lien secondaire 6 4 10 40
Voie de service 3 5 8 63
Tertiaire 52 12 64 19
Nationale 1 0 1 0
Lien national 10 0 10 0
Non classifiée 25 21 46 46

Dans le cas de la ville de Sherbrooke, seulement 77 routes sur 770 ont recu la bonne classe de
vitesse, soit 10 % du réseau routier (figure 20). De plus, 70 des 77 routes bien prédites se trouvent
dans une seule classe, soit 35 mph. Dans ce cas-ci, le mode¢le a eu tendance a sous-évaluer la vitesse,
notamment pour la classe de vitesse réelle 45 mph et 65 mph ou le modéle a prédit des vitesses de
17,5 mph. La répartition des prédictions en fonction des types de routes montre que c’est la classe
locale qui a le plus faible pourcentage de valeurs correctement prédites avec 3 % d’autant plus que
cette classe contient plus de la moitié des routes (53 %) (tableau 14). La classe ou le modele a le

mieux performé est la classe collectrice avec 32 % de valeurs correctes, soit 4 % du total des routes.

Répartition des classes de vitesse prédites a Sherbrooke
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Figure 20. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses
réelles a Sherbrooke

32



Sherbrooke
Type de route | Prédictions | Prédictions Total % correctes
incorrectes | correctes
Artére 159 26 185 14
Autoroute 60 7 67 11
Chemin privé 12 1 13 8
Collectrice 66 31 97 32
Locale 396 12 408 3

routes au total.

Répartition des classes de vitesse prédites a Akron
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Tableau 14. Répartition des prédictions de classes de vitesse en fonction du type de route a

Pour la premiére ville aux Etats-Unis, a Akron, 27 % des routes ont été correctement prédites
(figure 21). Pour cette ville, la majorité¢ des bonnes prédictions sont attribuées a la classe 25 mph
avec 175 bonnes prédictions. De plus, la classe de vitesse réelle 55 mph est bien prédite a 56 %
avec 92 bonnes prédictions sur 163. La majorité des erreurs de prédictions sont attribuées a la classe
réelle de 25 mph, ce qui représente 53 % des routes de ce réseau routier. Pour les types de routes,
les autoroutes sont bien prédites a 66 % et les routes résidentielles a 42 % (tableau 15). Quant aux

routes primaires, elles obtiennent 8 % ce qui a un fort impact puisque cela représente 20 % des

Figure 21. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses

réelles a Akron
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Tableau 15. Répartition des prédictions de classes de vitesse en fonction du type de route a
AKkron

Type de route Prédictions | Prédictions Total % correctes
incorrectes correctes
Autoroute 38 74 112 66
Lien autoroutier 58 24 82 29
Primaire 254 22 276 8
Lien primaire 2 0 2 0
Résidentielle 173 123 296 42
Secondaire 191 44 235 19
Tertiaire 149 42 191 22
Lien tertiaire 5 0 5 0
Non classifiée 38 12 50 24

Pour la deuxiéme ville aux Etats-Unis, a Keasbey, trés peu de bonnes prédictions sont générées. En
effet, seulement 107 (17 %) de bonnes classes de vitesse sont prédites sur un total de 643 (figure
22). La majorité des bonnes classes de vitesse se trouvent dans la classe 25 mph (53 routes) et 55
mph (37 routes) ce qui donne 14 % du total des routes. Cela est observable avec les types de routes
puisque les routes résidentielles sont a 42 % et les autoroutes a 34 % de bonnes prédictions. On

retrouve donc des valeurs trés basses pour les autres types de routes (tableau 16).

Répartition des classes de vitesse prédites a Keasbey
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Figure 22. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses
réelles a Keasbey
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Tableau 16. Répartition des prédictions de classes de vitesse en fonction du type de route a

Keasbey

Type de route Prédictions | Prédictions %

. Total

incorrectes | correctes correctes
Autoroute 69 35 104 34
Lien autoroutier 69 8 77 10
Primaire 6 0 6 0
Résidentielle 61 45 106 42
Secondaire 83 9 92 10
Lien secondaire 38 1 39 3
Voie de service 15 0 15 0
Tertiaire 190 8 198 4
Lien tertiaire 5 1 6 17

Pour évaluer globalement les résultats obtenus, I’erreur absolue moyenne (MAE) et ’erreur
quadratique moyenne (RMSE) sont calculées pour chaque zone d’étude (équations 1 et 2) (tableau
17). 11 en ressort que les sites avec un réseau routier plus dense, soit a Akron et a Montréal,
obtiennent les meilleurs résultats avec une MAE de 8,67 mph et de 9,88 mph. Pour Keasbey et
Sherbrooke, la MAE est plus élevée de quelques mph, soit 11,31 et 13,01 mph. Globalement, le
modele a prédit a environ 10,72 mph d’erreur selon le résultat moyen du MAE. En ce qui concerne
les valeurs de RMSE, elles sont plus élevées ce qui montre I’importance des plus grands écarts

entre les prédictions et les valeurs réelles. C’est particulierement le cas pour Montréal ou le RMSE

est a 13,73, soit 3,85 mph de plus que la MAE. Pour les autres sites d’études, on pergoit une

augmentation moyenne de 2,66 mph. Quant a la valeur moyenne de RMSE, elle se situe a 13,68

mph.

n

(2) RMSE = [Z=0i9°
n

Tableau 17. Résultats des métriques d’évaluation MAE et RMSE pour les différents sites

d’études
Ville Montreal | Sherbrooke | Akron Keasbey Moyenne
MAE (mph) 9,88 13,01 8,67 11,31 10,72
RMSE (mph) 13,73 15,44 11,56 13,96 13,68
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5. Interprétation et discussion des résultats

Ce chapitre traite d’abord de 1’évaluation des objectifs de 1’essai. Par la suite, les limites de la

méthode sont exposées tout en fournissant des pistes d’amélioration du projet.

5.1.Evaluation de atteinte des objectifs de I’essai

L’objectif principal de ce projet visait a établir une méthodologie permettant d’estimer
automatiquement les limites de vitesse des routes a partir d’images satellites. Pour atteindre cet

objectif, plusieurs étapes secondaires ont été réalisées.

Tout d’abord, il a fallu sélectionner une méthodologie appropriée, facile a reproduire. A cette fin,
la méthode développée lors du SpaceNet 5 Challenge a été retenue. Cette méthode avait pour
avantage d’extraire le réseau routier a I’aide d’un modele de segmentation sémantique en plus de
prédire les limites de vitesse de chacun des segments. De plus, le modele CRESI final utilisé lors
de la compétition était accessible en plus des programmes Python, nécessaire lors des étapes
techniques. Ces ¢léments ont permis de reproduire la méthode efficacement et de vérifier son bon

fonctionnement.

Ensuite, quatre sites d’étude en Amérique du Nord ont été déterminés, soit Montréal, Sherbrooke,
Akron et Keasbey. Ces sites ont été sélectionnés en raison de caractéristiques communes en lien
avec leur réseau routier. En effet, on y retrouve des ouvrages spécifiques, tels que des ponts, des
viaducs, des échangeurs et des autoroutes, ce qui les rend plus facilement comparables entre eux.
Par ailleurs, les villes d’Akron et de Keasbey ont été choisies spécifiquement, car les données de

I’entreprise E-SMART pour ces sites présentaient plusieurs limites de vitesse manquantes.

Une fois la méthodologie appliquée a chacun des sites, 4 réseaux routiers ont été extraits
comprenant des classes de limite de vitesse spécifique, soit 17,5 mph, 25 mph, 35 mph, 45 mph,
55 mph et 65 mph. L’évaluation des prédictions de limite de vitesse s’est effectuée en comparant
les réseaux extraits aux réseaux routiers réels provenant d’OpenStreetMap, de la ville de
Sherbrooke et de 1’entreprise E-SMART. Cela a été possible grace a I'utilisation de I’outil de
jointure par plus proches voisins de QGIS. Ainsi, une nouvelle couche de données a été créée pour
chaque réseau routier extrait, permettant de retrouver les valeurs de limite de vitesse et de classe
de route du réseau routier réel correspondant spatialement. De plus, il a été nécessaire de

transformer les valeurs de limite de vitesse des réseaux réels afin de correspondre aux 6 classes de
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vitesse des réseaux extraits. Cela a permis de ressortir les statistiques d’évaluation des prédictions

des limites de vitesse.

5.2.Limites et recommandations

Plusieurs facteurs ont influencé les résultats obtenus autant pour la segmentation des routes que
pour I’estimation des classes de limites de vitesse. Ces facteurs concernent les données
d’entrainement du modgele, 1’architecture du modele d’apprentissage profond ainsi que la méthode

employée pour comparer les réseaux routiers aux réseaux routiers véritables.

Tout d’abord, le modele congu par 1I’équipe du SpaceNet 5 Challenge avait pour objectif d’étre
opérationnel a I’échelle mondiale. C'est pourquoi quatre sites a travers le monde avaient été
sélectionnés pour I’entrainement du modele CRESI. Bien que cela ait permis de créer un ensemble
d’images satellites hétérogenes comportant différents contextes routiers, aucun des quatre sites ne
se situait en Amérique du Nord. De plus, les images d’entrainement possédaient des angles au
nadir différents, variant de 8 a 22 degrés, comparativement aux images utilisées dans 1’essai, qui
sont strictement au nadir. Il est donc possible que le modele n’ait pas eu suffisamment d’exemples
similaires pour extraire les routes de maniére optimale dans les différents sites d’études de cet essai.
Cela est observable en majeure partie lorsqu'il s'agit d’architectures plus complexes telles que des
ponts et des échangeurs d'autoroutes. Il serait donc intéressant pour 1’entreprise E-SMART de tester
’entrainement d’un modéle comprenant des zones uniquement au Canada et aux Etats-Unis ou
méme au sein d’une seule province ou Etat afin d’en évaluer les résultats. Ensuite, le contexte du
SpaceNet Challenge implique que les données vectorielles utilisées pour I’entrainement du modele
alent été €tiquetées manuellement par 1’équipe a I'interne. Cela implique la possibilité que des
erreurs aient €té introduites dans les réseaux routiers d'entrainements. D’une part, les limites de
vitesse assignées proviennent d’une matrice d’attributs qualitatifs comme la classe de route, le
nombre de voies, le type de chaussée, etc. D’autre part, ces limites de vitesse ne tiennent pas compte
du cadre législatif propre a chaque emplacement, ce qui tend vers une généralisation des classes de

vitesses.

L’architecture utilisée dans le modele CRESIV2 date de 2019. Avec 1’apparition de nouveaux
modeles et de techniques plus avancées en apprentissage profond, il serait pertinent de reproduire

cette méthodologie en utilisant une architecture plus récente. Un tel modele pourrait €tre entrainé
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a partir d’images au nadir d’Amérique du Nord et de réseaux routiers dont les limites de vitesse

proviennent de sources officielles.

Un aspect supplémentaire a considérer dans 1’évaluation des résultats est la méthode utilisée pour
comparer les limites de vitesse prédites aux valeurs réelles. En effet, comme le réseau routier
produit n’est pas superposable spatialement avec le réseau routier réel, une recherche par proximité
a ¢été effectuée afin de joindre les attributs des routes a moins de 5 m de distance. Cela implique
que certaines routes n’ont pas été jointes avec la bonne correspondance. Ce probléme survient
notamment lorsqu’il y a des structures telles que des ponts, viaducs ou échangeurs et en présence
d’intersections. Dans le cas ou la mauvaise route jointe n’a pas la méme limite de vitesse que la
route qui aurait di étre jointe, cela fausse le résultat et a pour impact de diminuer le pourcentage
de routes correctement prédites ainsi que d’augmenter les valeurs des métriques d’erreur MAE et
RMSE. II serait donc nécessaire d’élaborer une méthode afin de déterminer si la route extraite est

comparée a la bonne route du réseau de vérité terrain.

6. Conclusion

Cet essai réalisé avec la collaboration de I’entreprise E-SMART avait pour but la mise en ceuvre
d’une méthodologie d’estimation de limites de vitesse d’un réseau routier a partir d’imagerie
satellite. Plus spécifiquement, la méthode employée, soit celle du SpaceNet 5 Challenge extrait le
réseau routier des images satellites en plus de déterminer une classe de vitesse potentielle grace a
un modéle de segmentation sémantique préentrainé. A partir de quatre sites d’études urbains en
Amérique du Nord, soit Montréal, Sherbrooke, Akron et Keasbey, il a été possible d’y prédire la
classe de vitesse des segments de route. Les classes de vitesse des réseaux routiers extraits ont été
comparées aux vitesses de jeux de données de réseau routier réel correspondant. Les résultats
montrent qu’en moyenne, 22 % des vitesses prédites correspondent aux vitesses réelles. C’est a
Montréal et a Akron que les meilleurs résultats ont été obtenus avec 32 et 27 % de vitesses bien
prédites. Pour Keasbey et Sherbrooke, on retrouve plutot 17 et 10 % de vitesses bien prédites. Tout
de méme, les métriques MAE et RMSE démontrent des résultats plus encourageants. En effet, en
moyenne la MAE se trouve a 10,72 mph et la moyenne de RMSE se trouve a 13,68 mph. Ainsi, la

vitesse prédite se trouve bien souvent a une classe de vitesse pres de la bonne valeur.
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Le principal facteur limitant de ce projet réside dans 1’utilisation d’un modele préentrainé sur des
régions du monde autres que I’Amérique du Nord. L’entrailnement d’un nouveau mod¢le basé
uniquement sur des lieux situés en Amérique du Nord faciliterait considérablement 1’estimation
des limites de vitesse, notamment s’il était congu spécifiquement pour un pays ou bien a 1’échelle
d’une province ou Etat. De plus, la méthode de comparaison des routes extraites a celles qui font
office de vérités terrain pourrait &tre améliorée de sorte a réduire les erreurs venant de la jointure
par proximité.

Une autre approche intéressante pour estimer les limites de vitesse sur un réseau routier consisterait
a utiliser un mode¢le basé sur les graphes. Cette technique innovante permettrait d’entrainer un
modele capable d’analyser les attributs des routes afin de prédire la limite de vitesse. De plus, le
contexte de voisinage pourrait étre exploité pour déterminer une valeur en fonction de

I’environnement local d’une route.

Pour conclure, 1’estimation de limites de vitesse précises a partir d’imagerie satellitaire est une
tache plutot ardue. C’est en quelque sorte ce qui explique la rareté de ce genre de projet dans la
littérature actuelle. Tout de méme, ce projet présente une méthode reproductible ayant un fort

potentiel d’amélioration.
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