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Résumé 

La sécurité routière constitue un enjeu collectif ayant bénéficié des avancées technologiques 

réalisées au cours des deux dernières décennies. C’est dans ce contexte que l’entreprise 

montréalaise E-SMART développe des systèmes embarqués pour le domaine du transport routier 

de marchandises en Amérique du Nord, visant à améliorer la sécurité des usagers ainsi que la 

protection des biens. Ces systèmes permettent, entre autres, d’immobiliser des véhicules à distance, 

de sécuriser les passages sous des hauteurs critiques et de respecter les limites de vitesse en temps 

réel grâce à un système connecté à l’ordinateur de bord du véhicule. Cependant, E-SMART fait 

face à des défis liés à la disponibilité et à l’exactitude des données utilisées dans le module qui 

permettant de contrôler la vitesse. En effet, les bases de données provenant de Here Maps et 

OpenStreetMap (OSM) présentent des limites, notamment des données manquantes, inexactes ou 

des mises à jour non systématiques. Ces lacunes impactent directement le système de limitation de 

vitesse, entraînant des restrictions non désirées. Il est donc impératif pour E-SMART d’améliorer 

la fiabilité des bases de données utilisées afin de garantir un fonctionnement optimal de ses 

systèmes et de répondre aux besoins de ses utilisateurs. Le présent projet a permis de tester une 

méthodologie dans le but d’extraire des limites de vitesse potentielles d’un réseau routier à partir 

d’imagerie satellite. D’après la littérature scientifique à propos de ce sujet, c’est la méthodologie 

élaborée lors du SpaceNet 5 Challenge qui a été retenue. Cette méthode consiste à utiliser un 

modèle de segmentation sémantique, soit le modèle CRESIv2, permettant d’extraire le réseau 

routier et de prédire les limites de vitesse associées. La méthode a été appliquée à quatre sites 

d’études en Amérique du Nord. Les limites de vitesse prédites ont été comparées à partir des 

données de réseaux routiers provenant de différentes sources en fonction des sites d’études (OSM, 

E-SMART et la Ville de Sherbrooke). En moyenne, 22 % des vitesses prédites se trouvent dans la 

bonne classe de vitesse. Les calculs de MAE et de RMSE ont montré que les vitesses prédites se 

trouvent généralement à plus ou moins une classe de vitesse d’être la classe véritable. La limitation 

principale de la méthodologie testée réside dans l’utilisation du modèle CRESIv2 qui a été entraîné 

à partir d’images satellites à travers le monde. Un modèle entraîné strictement en Amérique du 

Nord aurait un potentiel accru dans la prédiction des limites de vitesse.  

Mots-clés : Apprentissage profond; télédétection; réseau routier; modèle de segmentation; 

imagerie satellitaire; sécurité routière 
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1. Introduction 

1.1. Mise en contexte 

La sécurité routière est un enjeu collectif dont les avancements bénéficient à tous. Les efforts 

déployés au cours des deux dernières décennies afin de rendre le réseau routier plus sûr montrent 

qu'il a été possible de réduire à la fois le risque d'accident et leur gravité. Au Canada, entre 2003 et 

2022, le nombre de collisions rapportées au travers de rapports de police a réduit d'environ 40 % 

pour les accidents avec blessures et de 30 % pour les accidents mortels (Statistiques Canada, 2024). 

Pour la même période aux États-Unis, en tenant compte de la démographie, le nombre de décès 

dus aux accidents de la route a reculé d'environ 13 % (Insurance Institute for Highway Safety, 

2022). Malgré ces diminutions importantes, pour certains facteurs de risque ou de gravité, il est 

impossible d'exercer un contrôle absolu, et ce même en accentuant les conséquences prévues par 

la loi. Il s'agit notamment de facteurs tels que la conduite avec facultés affaiblies (drogues, alcool 

et fatigue) et le respect des limites de vitesse (OMS, 2004). Toujours selon les chiffres rapportés 

par Statistiques Canada, les décès survenus lors d’accidents de la route en 2022 ayant pour facteurs 

contributifs les facultés affaiblies (drogues et alcool) sont établis à 23 % alors que pour la vitesse 

on retrouve 21,9 % (Statistiques Canada, 2024). 

Néanmoins, les progrès technologiques actuels et en voie de développement offrent de nouvelles 

perspectives en proposant une assistance à la conduite, voire une conduite autonome à différents 

niveaux (Badue et al., 2021). L’automatisation d’un véhicule est définie en cinq niveaux par la 

Society of Automotive Engineers (SAE). Le niveau 0 correspond à la situation où le conducteur doit 

entièrement gérer la conduite tandis que le niveau 1 offre une aide à la conduite comme l'alignement 

du véhicule dans la voie et le contrôle adaptatif du régulateur de vitesse. L’automatisation véritable 

de la conduite débute au niveau 3 et c'est au niveau 5 que la conduite est entièrement prise en charge 

par le système du véhicule (SAE International, 2021).  

Dans ce contexte, l’entreprise E-SMART située à Montréal, œuvre dans la conception et la 

commercialisation d’outils technologiques. Ces outils sont actuellement intégrés dans le domaine 

du transport routier de marchandises en Amérique du Nord. Les solutions proposées par l’entreprise 

favorisent la sécurité routière et la protection des marchandises. Plus spécifiquement, les systèmes 

actuels permettent entre autres d’immobiliser un véhicule lourd à distance, de sécuriser le véhicule 
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à l’approche de hauteurs libres comportant un risque de collision et le respect des limites de vitesse 

en temps réel.  

Cet essai, réalisé en collaboration avec des membres du corps professoral de l'Université de 

Sherbrooke et le directeur de recherche et développement de E-SMART, vise à proposer une 

solution technique en lien avec le système intégré de limitation de vitesse. Ce système, connecté à 

la pédale d’accélérateur, limite la vitesse en fonction de la position en temps réel du véhicule et du 

réseau routier parcouru. Pour que cette fonctionnalité soit opérable, il est primordial pour E- 

SMART d’intégrer des données fiables concernant les limites de vitesse du réseau routier afin de 

ne pas impacter négativement la conduite de ses utilisateurs.  

1.2. Problématique 

La problématique rencontrée par l'entreprise E-SMART réside dans la disponibilité et l'exactitude 

des intrants utilisés au sein du système de gestion des limites de vitesse. Les bases de données 

utilisées dans le système permettant de restreindre la vitesse maximale des véhicules lourds 

proviennent de l’entreprise Here Maps et de l’organisme sans but lucratif OpenStreetMap (OSM). 

Here Maps propose diverses solutions payantes en lien avec la cartographie routière. Cependant, 

cette solution ne permet pas à elle seule de couvrir l’étendue de l’Amérique du Nord en ce qui a 

trait aux données de limites de vitesse d’autant plus que certaines données ne sont pas exactes. 

C’est la raison pour laquelle OSM a été intégrée, soit pour permettre d’élargir la base de données 

et en permettant une comparaison d’attributs. Bien qu’OSM consiste en une base de données 

massive de données vectorielles, telles que les empreintes de bâtiments, les espaces verts et les 

routes, l'utilisation de ces données à grande échelle présente certaines lacunes. En effet, l’attribut 

de limites de vitesse rattaché aux routes comporte fréquemment une valeur non renseignée. De 

plus, certaines routes peuvent être manquantes ou non représentatives de la réalité du fait des mises 

à jour non systématiques. Le caractère collaboratif d'OSM implique également un risque d'erreur 

en raison de la qualité variable des contributions. Ainsi, lorsque ces données sont manquantes ou 

erronées, le système développé par E-SMART en est directement impacté, conduisant à des 

restrictions de vitesse maximale non désirées. Il est donc essentiel pour l'entreprise de remédier 

aux lacunes rencontrées par l’utilisation de ces bases de données afin de bénéficier d‘une base de 

données cohérente avec le réseau routier actuel. 
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1.3. Objectifs 

L'objectif principal de cet essai vise à établir une preuve de concept mettant en œuvre une méthode 

automatisée d’estimation des limites de vitesse d'un réseau routier à partir d'images satellites.  

Les sous objectifs permettant de réaliser l’objectif principal sont :  

1. Déterminer une méthode reproductible;   

2. Appliquer la méthodologie sur des cas concrets en Amérique du Nord; 

3. Évaluer la précision des limites de vitesse prédites.  

 

2. Cadre théorique 

Cette revue de littérature vise à brosser un portrait global des données relatives aux limites de 

vitesse afin de mieux cerner la problématique énoncée. La section 2.1 présente le contexte 

entourant les limites de vitesse, de leur détermination à leur accessibilité, en passant par leurs 

champs d’application. La section 2.2 aborde l’intelligence artificielle, en mettant l’accent sur 

l’apprentissage profond et son utilisation dans le traitement d’images satellites. Enfin, la section 

2.3 expose différentes approches existantes pour l’estimation des limites de vitesse à partir des 

données routières. 

2.1. Données de limites de vitesse 

À priori, les limites de vitesse indiquées au sein du réseau routier semblent instinctives. En réalité, 

le réseau routier comporte une complexité étroitement liée au contexte géographique et politique, 

ce qui rend la généralisation des limites de vitesse excessivement ardue, voire impossible pour une 

région aussi étendue que l’Amérique du Nord. C’est l’une des raisons qui pourraient expliquer 

l’absence de couverture des données de limites de vitesse à travers des bases de données ouvertes. 

Pourtant, ces données sont une plus-value dans un contexte où les champs d’applications se 

multiplient et s'affinent au fil des ans. 

2.1.1. Détermination des limites de vitesse 

Plusieurs éléments entrent en jeu dans la définition des limitations de vitesse des routes. Cela est 

fortement influencé par l’emplacement géographique. D’une part, les limites de vitesse diffèrent 

d’un pays à un autre, mais aussi entre les divisions administratives législatives qui les composent 
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comme les États ou les provinces. D’autre part, il s'agit de règles basées en fonction de la classe de 

route et de la sécurité routière.  

Au Québec, le réseau routier est principalement composé de trois classes fonctionnelles: le réseau 

supérieur, le réseau local et le réseau d’accès aux ressources (MTMDET, 2025 -a). Pour chacune 

de ces classes fonctionnelles, des classes de route y sont associées quels que soient l'endroit et où 

une entité administrative gouvernementale est chargée de déterminer les limites de vitesse. Les 

deux principales entités administratives sont le ministère des Transports et de la Mobilité durable 

(MTMDET) et les municipalités (tableau 1) (MTMDET, 2025 -a).  

 

Tableau 1. Répartition de la charge des classes de routes au Québec 

 
Tableau tiré du MTMDET (2025 -a). 

Sur le plan de la sécurité, la présence de risque est prise en considération autant pour le conducteur 

que pour les autres usagers de la route ainsi que les individus vulnérables. C’est pourquoi la limite 

permise se voit à la baisse lorsqu’il y a un partage de la route avec des usagers tels que les cyclistes 

et les piétons, dans une zone de réduction de la distance de visibilité et au sein des zones scolaires 

(MTMDET, 2025 -b).  
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Les limites de vitesse ne sont pas toujours statiques dans le temps. En effet, elles peuvent être 

modifiées dans le cas d’accidents récurrents dans certaines zones ou lorsqu’un ajout routier 

nécessite une révision des limites de vitesse. Aussi, certaines limites de vitesse sont variables soit 

pour une période de l’année ou un horaire journalier comme c’est le cas pour les zones scolaires 

(MTMDET, 2023). Un autre élément à prendre en considération, fluctuant temporellement, est la 

modification de la limite de vitesse en présence de chantiers qui affectent le réseau routier. Cela est 

dû au fait que ces zones temporaires comportent un lot de risque élevé pour les ouvriers, mais aussi 

pour les utilisateurs du réseau routier (CNESST, 2022). Par exemple, lorsqu'une autoroute à 

plusieurs voies se voit restreinte à une seule voie carrossable, la limite de vitesse fixée dépend de 

facteurs comme la largeur de la voie, du nombre d’accotements et la présence d’éléments comme 

des glissières, d’éléments visuels, etc (tableau 2). De plus, la présence ou non d’une aire sécurisée 

au chantier peut impacter la détermination de la limite de vitesse temporaire (ministère des 

Transports du Québec, 2021).  

Tableau 2. Vitesses légales temporaires pour une voie de circulation restante 

 
Tableau tiré du ministère des Transports du Québec (2021). 

Les limites de vitesse peuvent aussi varier selon le type d’usager de la route. C’est particulièrement 

le cas pour les véhicules lourds aux États-Unis où certains États comme la Californie peuvent 

réduire la limite de vitesse permise de 15 mph comparativement à celle des automobiles (tableau 

3) (National Motorists Association, 2024). Au Québec, depuis 2009, les véhicules lourds sont 

soumis à une restriction active de 105 km/h, et ce même pour les véhicules provenant de l’extérieur 

de la province (MTMDET, 2025 -c). 
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Tableau 3. États américains limitant la vitesse maximale des véhicules lourds 

États (É-U) 
Véhicule 

(mph) 

Véhicule 

lourd (mph) 

Arkansas 75 70 

Californie 70 55 

Idaho 75-80 70 

Indiana 70 65 

Michigan 70-75 65 

Montana 80 70 

Oregon 65-70 65 

Washington 70 60 

Tableau tiré de National Motorists Association (2024). 

2.1.2. Champs d’application 

Utilisées de concert avec le réseau routier ou sans, les limites de vitesse offrent une multitude de 

champs d’application. C’est particulièrement le cas avec certains organismes gouvernementaux qui 

en bénéficient dans des contextes d'analyse du réseau routier et de mises à jour d’autant plus qu’ils 

ont la possibilité tenir des bases de données internes à jour.  En termes de sécurité routière, les 

limites de vitesse sont une partie intégrante des études d’aménagement du territoire (ministère des 

Transports du Québec, 2015). De plus, les données peuvent servir à simuler le réseau routier pour 

évaluer les trajets des utilisateurs, les temps des courses des véhicules d’urgences et les impacts 

environnementaux associés (Bonhomme et al., 2016; Othman, 2021).  

Les entreprises peuvent aussi tirer profit de cette donnée. En effet, comme les limites de vitesse ne 

sont pas totalement renseignées via des bases de données ouvertes, il y a une l’opportunité quant à 

les inventorier et d’en faire la commercialisation. L’application principale se trouve dans les 

services de cartographie en ligne comme Google Maps et Here Maps fortement utilisés par les 

automobilistes. Il peut aussi être question d’application dans les systèmes d’aide à la conduite 

comme celui proposé par E-SMART permettant de limiter la vitesse en temps réel. De plus, comme 

mentionnés en introduction, les systèmes au sein de véhicules autonomes nécessitent d’intégrer les 

données de limites de vitesse afin d’être en mesure de les respecter.  

2.1.3. Disponibilité de la donnée 

L’attribut de limite de vitesse fait partie intégrante de la donnée du réseau routier puisqu’il est 

nécessaire de relier la limite de vitesse à une position géographique ou à un segment de route. Bien 

que de nombreuses organisations gouvernementales, à différents niveaux, mettent à disposition des 
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données actualisées sur le réseau routier, l’attribut de limite de vitesse demeure majoritairement 

absent. 

Lorsque l’attribut de limite de vitesse est présent et peut être obtenu en téléchargeant un fichier de 

format géospatial, c’est bien souvent pour une très fine portion du territoire comme c’est le cas de 

la ville de Sherbrooke via un portail Web (Ville de Sherbrooke, 2024)    

Certains distributeurs privés offrent la possibilité d'accéder aux données. C’est le cas de Google, 

via une interface de programmation d'application (API), qui permet de lancer des requêtes accédant 

aux métadonnées du réseau routier. Des coûts sont reliés aux requêtes et il n’est pas possible de 

télécharger le réseau routier entièrement (Google, 2024). Le même type de solution est proposé par 

l’entreprise Here Maps.  

Une solution existe pour pallier les coûts et obtenir le réseau routier avec les données de limites de 

vitesse, soit l’utilisation OpenStreetMap (OSM). OSM est une base de données cartographique 

collaborative gratuite créée en 2004 (OSM, 2024). Celle-ci permet aux utilisateurs du monde entier 

d’éditer la carte numérique afin d’intégrer des éléments comme le réseau de transport ainsi que des 

métadonnées associées. Les sources de données sont constituées de traces GPS, d’imageries 

aériennes et satellites et de données publiques. La limitation principale quant à l’utilisation des 

données d’OSM est qu’elle est incomplète. De plus, les mises à jour ne sont pas systématiques et 

les données peuvent comporter des erreurs dues au caractère collaboratif. Les données 

d'OpenStreetMap sont accessibles via divers moyens. La manière la plus simple d’accéder aux 

données est d’utiliser directement la cartographie Web qui permet l’exportation de données selon 

une zone définie manuellement. Une autre façon d’acquérir les données est de passer par une API 

comme OSM API, OSMnx ou Nominatim API. Certains logiciels permettent l’extraction des 

données d’OSM comme QGIS en utilisant l’extension QuickOSM dans QGIS (Wiki OSM, 2024).  

2.2. L’intelligence artificielle 

Afin de comprendre l’apport de l’intégration de l’intelligence artificielle (IA) dans la prédiction 

des limites de vitesse des routes dans une image, il est approprié de fournir une brève définition 

des concepts clés en la matière. D’abord, le dictionnaire Larousse définit l’intelligence artificielle 

comme : « l’ensemble de théories et de techniques mises en œuvre en vue de réaliser des machines 

capables de simuler l’intelligence » (Larousse, 2024). L’IA décrit le domaine global et comprend 

des sous-domaines, soit l'apprentissage automatique et l’apprentissage profond. L’apprentissage 
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automatique (Machine Learning) est défini par la capacité d’un système à acquérir de l’expérience 

afin d’améliorer ses performances lors de l'exécution d’une tâche, et ce à partir de données brutes 

et sans intervention humaine (Goodfellow et al., 2016). Dans le cas de l’apprentissage profond 

(Deep Learning), cette technique est une sous-catégorie de l’apprentissage automatique. La 

spécificité technique de l’apprentissage profond est l’intégration d’un réseau de neurones artificiel 

permettant d’accomplir des tâches plus complexes. Pour bien synthétiser ces concepts, on peut les 

représenter sous forme de schéma, avec plusieurs niveaux, où le niveau englobant correspond à 

l'IA et le niveau le plus profond à l'apprentissage profond (figure 1).  

 

Figure tirée de Goodfellow et al., (2016). 

Figure 1. Diagramme de Venn des différentes couches de l’IA à l’apprentissage profond 

 

2.2.1. Généralités en apprentissage profond 

Tout d’abord, l’apprentissage profond est une technique largement utilisée dans diverses 

disciplines, notamment pour effectuer des prédictions, traiter le langage ou analyser des images en 

vision par ordinateur (Bai, 2022). Ainsi, grâce à sa démocratisation, une large variété de modèles 

est disponible et ceux-ci sont adaptés à tous types de données et selon les objectifs. Par exemple, 
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les réseaux convolutifs (CNN) sont particulièrement adaptés à l’analyse des images, permettant 

d’extraire automatiquement des caractéristiques visuelles complexes pour des tâches comme la 

reconnaissance d’objets ou la segmentation d’images. De leur côté, les réseaux récurrents (RNN) 

et leurs variantes modernes, comme les réseaux de type transformer, sont conçus pour traiter des 

données séquentielles telles que le texte ou les séries temporelles, ce qui en fait des aides 

révolutionnaires en traduction automatique ou en prévision de données. Le choix du modèle est 

donc une étape importante afin de maximiser le potentiel de cette technique.  

Plusieurs concepts font partie de l’apprentissage profond de sa composition fondamentale aux 

diverses étapes d’utilisation. Le premier élément à considérer pour comprendre cette technique, 

sans doute la pierre angulaire, est le réseau de neurones artificiels (RNA). Souvent comparé au 

fonctionnement du cerveau humain pour tenter de faciliter sa compréhension, le RNA comprend 

des neurones artificiels organisés en couches. On peut représenter la composition globale d’un 

réseau de neurones en 3 grandes étapes orchestrées dans des couches distinctes : la couche d’entrée, 

les couches cachées et la couche de sortie (figure 2). La couche d’entrée reçoit les données qui 

seront utilisées pour l’entraînement du modèle. Par exemple, pour une image, l’entrée serait les 

pixels et leur valeur (Hadi et al., 2023; Sarker, 2021).    

 

Figure tirée de Hadi et al., (2023). 

Figure 2. Comparaison d’un de neurone biologique à neurone artificiel 

 

Les neurones des couches cachées ont pour rôle d’extraire des informations pertinentes 

(caractéristiques) en appliquant des pondérations aux valeurs des données en entrée pour en 

calculer la somme pondérée qui passe à travers une fonction d’activation. La sortie de la fonction 

d’activation est envoyée sous forme de signal (information) vers un autre neurone d’une autre 

couche s'il y en a d’autres.  D’ailleurs, plus le modèle contient de couches de neurones, plus celui-
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ci sera en mesure d’être performant lors de problématiques complexes comme la détection d’objet. 

Une fois que la dernière couche des couches cachées est atteinte, la couche de sortie pourra fournir 

un résultat qui est comparé à la valeur attendue (vérité terrain) à l’aide d’une fonction de perte ce 

qui permet d’obtenir l’erreur de la prédiction du modèle. Pour qu’il y ait un apprentissage, ces 

étapes sont répétées maintes fois afin d’optimiser les poids des connexions selon l’erreur obtenue 

et grâce à des algorithmes d’optimisation. Pour qu’un modèle soit en mesure de prédire 

adéquatement, celui-ci a besoin d’une certaine quantité d'exemples diversifiés pour augmenter le 

degré de confiance des prédictions produites (Sarker, 2021).  

 

2.2.2. Apprentissage profond en télédétection 

Le nombre croissant d'appareils d’acquisition d’images à distance permettent de recueillir de 

grandes quantités de données. Cela offre donc de nouvelles perspectives dans de nombreux champs 

d’application reliés au domaine de la télédétection. La quantité et la complexité des données 

rendent l’intelligence artificielle un atout de taille dans les traitements et les analyses. En effet, les 

réseaux de neurones exploités à partir d’ordinateurs performants permettent l’automatisation des 

tâches anciennement effectuées à la main ou à l'œil, en plus de permettre d’effectuer ces tâches à 

grande échelle. Plus spécifiquement, dans le domaine de l’analyse d’images aéroportées (drone, 

aéronef ou satellite), les principales techniques d’apprentissage profond couramment utilisées 

concernent la classification d’images, la détection d’objet, la segmentation d’instance, la 

segmentation sémantique ainsi que l’extraction de graphes (Bahl, 2022) (figure 3). Chacune de ces 

techniques comporte des spécificités :      

• Classification d’objet : Détermination de la classe d’une image (ce qui est le plus 

représenté); 

• Détection d’objet : Classifier un ou plusieurs objets d’intérêts et déterminer la position de 

chacun dans l’image en établissant une boîte englobante;   

• Segmentation d’instance : Classifier chaque pixel d’un objet, où l’objet est une entité unique 

et séparée des autres d’une même classe; 

• Segmentation sémantique : Classifier chaque pixel de l’image sans nécessairement 

différencier les classes; 

• Extraction de graphes : Détermination d’un réseau composé de sommets et d’arêtes 
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Comparaison entre la classification, la détection d’objet, la segmentation d’instance et 

sémantique et l’extraction de graphes. Figure tirée de Bahl (2022). 

Figure 3. Techniques d’apprentissage profond utilisées analyse d’image 

2.3. Estimation des limites de vitesse 

Tout d'abord, étant donné que la limite de vitesse dépend en majeur parti du contexte, certains 

exemples dans la littérature montrent qu'il est possible de s'appuyer sur cet élément pour calculer 

une limite de vitesse probable. Ce contexte peut donc être représenté à partir de paramètres 

qualitatifs et quantitatifs. C’est ce qui est présenté dans l’article de Beere (2016), celui-ci estime le 

temps d’un trajet donné en estimant la vitesse moyenne de déplacement en réunissant des 

paramètres comme le nombre de voies, le type de surface et le type de route (tableau 4). Les 

données associées aux paramètres utilisés dans cet article proviennent de trois sources de données 

: d’OSM, d’une couche de données du territoire de la Nouvelle-Zélande ainsi que la New Zealand 

Open GPS Maps Project (Beere, 2016). Les résultats présentés montrent qu'il a été possible 

d'estimer le temps de déplacement avec une marge d'erreur moyenne d'environ 6,41 % (Beere, 

2016).  

Tableau 4. Paramètres utilisés pour estimer la vitesse moyenne de déplacement 

 

Tableau tiré de Beere (2016). 
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Lors de la compétition organisée par le SpaceNet 5 Challenge (SN5) en 2019, une méthode a été 

développée dans le but de déterminer le chemin le plus court dans un contexte de déplacement 

d’urgence. La méthodologie y est présentée par Adam Van Etten dans l’article intitulé : City-Scale 

Road Extraction from Satellite Imagery v2: Road Speeds and Travel Times. Plus spécifiquement, 

la méthode surnommée CRESIv2 permet de tracer le réseau routier et d’y estimer les limites de 

vitesse. Cette méthode repose sur l’extraction automatique du réseau routier à partir d’images 

satellites haute résolution. L’extraction y est réalisée à l’aide d’un modèle d’apprentissage profond 

préentraîné, qui effectue une segmentation sémantique permettant de prédire la classe de limite de 

vitesse pour chaque segment de route extrait (Etten, 2020) (figure 4). 

 

Figure tirée de Etten (2020). 

Figure 4. Extraction des routes et inférences des classes de limites de vitesse à partir d’une 

image satellite par l’algorithme CRESIv2  

 

Les données qui ont servi à entraîner le modèle sont constituées du réseau routier en format 

vectoriel et d’images satellites à haute résolution. Le jeu d’entraînement du réseau routier 

comprend les segments de route étiquetés selon des attributs de la taxonomie d’OSM. Il s'agit du 

type de route, du type de surface, du nombre de voies et de la présence de ponts (Etten, 2020). Une 

limite de vitesse a été associée pour chaque type de route en fonction de la table des vitesses des 

États-Unis retrouvée sur OSM (tableau 5). Ensuite, un facteur est appliqué à la limite de vitesse en 

fonction de la valeur de certains attributs. Par exemple, si la route n’est pas pavée, la vitesse est 

multipliée par 0,75 afin de réduire la vitesse maximale.  
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Tableau 5. Classification de limites de vitesse (mph) selon des attributs 

 

Tableau tiré de Etten (2020). 

 

Les métriques utilisées pour évaluer la performance de l’algorithme dans l’article sont l’Average 

Path Length Similarity (APLS) et la map topology (TOPO). L’APLS et le TOPO permettent de 

comparer le réseau résultant du modèle à un réseau faisant office de vérité terrain à partir d’un 

calcul déterminant une valeur variant entre 0 (aucune similarité) et 1 (très similaire). Dans le cas 

de l’APLS, la métrique sert principalement à évaluer les chemins optimaux entre deux nœuds tandis 

que la métrique TOPO sert à évaluer la similarité locale à un endroit précis dans le réseau. Selon 

Etten, ces métriques permettent d’évaluer plus efficacement 2 graphes entre eux que les métriques 

traditionnelles telles que l’intersection over union (IOU) ou le F1 score.   

Les résultats présentés par Etten montrent que l’algorithme développé est capable d’atteindre un 

score de TOPO de 0,63 et d’APLS en fonction de la longueur des segments de routes de 0,81 et en 

fonction du temps de trajet de 0,79 à Las Vegas. Cependant, lorsqu’on observe la moyenne en 

prenant en compte les différentes villes testées, le TOPO se trouve à 0,51, l’APLSlongueur à 0,67 et 

l’APLStemps à 0,64 (tableau 6) (Etten, 2020). Tout de même, l’algorithme CRESIv2 comparé à 

d’autres algorithmes du même type montre qu’il est plus performant en TOPO et en APLS (tableau 

7). 

Tableau 6. Comparaison des métriques de performances de CRESIv2 

 

Tableau tiré de Etten (2020). 
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Tableau 7. Comparaison des performances de CRESIv2 comparées à d’autres algorithmes 

 

Tableau tiré de Etten (2020). 

 

Dans cet essai, il sera question de reprendre la méthodologie élaborée lors du SpaceNet 5 

Challenge. D’une part, cette méthode est reproductible par la disponibilité du code de 

programmation Python ainsi que le modèle préentraîné à partir du site GitHub et du site Web de la 

compétition. D’autre part, la méthodologie semble prometteuse afin de répondre aux objectifs 

fixés. 

 

3. Matériel et méthodes 

Dans la première section de ce chapitre sont présentés les différents sites d’études et dans la 

seconde section, les données utilisées dans le cadre de l’essai. Dans la troisième section, la 

méthodologie est détaillée à l’aide d’un schéma méthodologique et de sections spécifiques aux 

étapes de la méthode.    

3.1. Territoire d’étude 

Les quatre sites d’études où la méthodologie élaborée dans le SpaceNet 5 Challenge est reproduite 

se situent en Amérique du Nord (figure 5). Les deux premiers sites se trouvent au Canada dans la 

province de Québec, soit dans la ville de Montréal et de Sherbrooke. Ces deux sites d’études ont 

été sélectionnés en raison de la disponibilité des données de limites de vitesse. Pour les deux sites 

d’étude suivants, ils sont localisés aux États-Unis, dans deux États distincts : à Keasbey, dans le 

New Jersey, et à Akron, dans l'Ohio. Ces villes ont été déterminées par l’entreprise E-SMART 

comme étant dans lieux problématiques du fait de l'absence de limitations de vitesse sur une vaste 

partie du réseau routier. Chaque site d’étude possède une superficie de 12 km2 mis à part le site 

d’étude à Sherbrooke où la superficie est de 14,5 km2 puisque la densité de routes y est plus faible.  
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La sélection de ces sites s’appuie sur la présence de certains ouvrages routiers d’intérêts. Ainsi, ces 

sites partagent la particularité d’être composés d’infrastructures routières diversifiées (échangeurs, 

ponts et/ou viaducs) ce qui permettra une comparaison plus précise. D’autre part, les types de 

classes de routes les plus fréquentées par les véhicules lourds sont présents dans chacun des sites : 

autoroutes, bretelles d'autoroute, routes principales et secondaires. Dans les villes telles que 

Montréal et Akron, le réseau routier y est plus important dues à la densité de bâtiment plus élevée. 

En somme, l’intérêt de cette sélection de sites est d’observer le comportement du modèle au travers 

de villes en Amérique du Nord.  

 

Figure 5. Localisation des 4 sites à l’étude en Amérique du Nord 

 

3.2. Données 

L’estimation de limites de vitesse pour les 4 sites d’études en Amérique du Nord nécessite 

l’utilisation de types de données variées. Il s'agit d’abord de données matricielles, soit de tuiles 

d’images satellites de 256 x 256 pixels couvrant les zones d’études (tableau 8). Les tuiles ont été 

obtenues à partir de l’API de Microsoft Bing et datent de 2020 à 2023. Ces tuiles possèdent 3 



16 

 

bandes spectrales (RVB) à très haute résolution, soit de 30 centimètres par pixel. Elles ont une 

profondeur de 8 bits et l’angle de prise de vue est au Nadir. Ces tuiles serviront d’intrants au modèle 

pour procéder à l’extraction du réseau routier et à la prédiction des limites de vitesse associées.   

D’autre part, des données vectorielles sont nécessaires pour des fins de comparaison avec la sortie 

du modèle de prédictions de limites de vitesse. Il s’agit donc des différents réseaux routiers 

correspondant aux sites d’étude et possédant un attribut de limite de vitesse et de type de classe de 

route pour chacun des segments de route. Ces données ont été rassemblées à partir de trois sources 

différentes en fonction du site d’étude (tableau 8). Pour le site d’étude à Montréal, les données 

d’OpenStreetMap ont été téléchargées à partir de l’extension QuickOSM disponible dans QGIS 

(figure 6). Pour Sherbrooke, la ville dispose d’un portail Web permettant d’y télécharger différentes 

couches de données, dont le réseau routier comprenant les limites de vitesse pour chaque segment 

(figure 6). En ce qui concerne les villes aux États-Unis (Akron et Keasbey), les données 

proviennent de l’entreprise E-SMART dont la source est aussi OpenStreetMap. Comme mentionné 

précédemment, pour certains segments de route dans les données de E-SMART, la limite de vitesse 

est manquante. À Keasbey, 34 % des routes présentes dans le jeu de données vectorielles ne 

disposent pas de limite de vitesse, tandis qu'à Akron, ce pourcentage est de 27 % (figure 7).  

 

Une donnée nécessaire à la reproduction de la méthode CRESIv2 élaborée lors du SpaceNet 5 

Challenge est le modèle de segmentation final. Ceux-ci ont mis à disposition le modèle discuté 

dans l’article sous format pth à partir d’un service AWS d’Amazon. Ce modèle a été préentraîné à 

partir d’images satellites et de réseaux routiers vectoriels étiquetés. Les sites d’études visées dans 

l’article concernaient 4 villes à travers le monde. Les images qui ont été utilisées proviennent du 

satellite WorldView-3 à une résolution spatiale de 30 cm par pixel (tableau 8). 
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Tableau 8. Sources de données utilisées dans le projet 

Données Fournisseur Description Date 

Images 

satellites 

Bing (Maxar) Tuiles d’images satellites provenant de 

Microsoft Bing à une résolution de 30 

cm par pixel 

 

2020-2023 

Modèle de 

segmentation  

SpaceNet 5 

Challenge  

Modèle de segmentation entraîné au 

format pth 

 

2019 

Réseau routier  E-SMART Vecteur de routes du site d’étude à 

Akron et Keasbey 

 

2024 

Réseau routier  OpenStreetMap Vecteur de routes du site d’étude à 

Montréal 

 

2024 

Réseau routier  Ville de 

Sherbrooke 

Vecteur de routes du site d’étude à 

Sherbrooke 

2024 

 

 

 

Données du réseau routier pour les Sites d’étude au Canada, à Montréal (a) et à Sherbrooke (b). 

Figure 6. Réseaux routiers des sites d’études au Canada 
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Données du réseau routier pour les Sites d’étude aux États-Unis, à Akron (c) et à Keasbey (d). 

Figure 7. Réseaux routiers des sites d’études aux États-Unis 

3.3. Méthodes d’analyse 

Dans ce projet, la méthodologie se divise en quatre phases : le prétraitement des données, les 

traitements principaux et leurs post-traitements, l’analyse des prédictions des limites de vitesse, 

ainsi que les recommandations et limites du projet (figure 8). Les étapes techniques en lien avec la 

méthode CRESIv2 s’effectuent dans un espace Docker, en langage de programmation Python. En 

ce qui a trait à la jointure entre les réseaux routiers réels et ceux produits par la méthodologie ainsi 

qu’aux calculs des statistiques menant aux résultats, ces étapes ont été réalisées dans un logiciel 

SIG, soit avec QGIS. 
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Figure 8. Schéma méthodologique du projet 
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3.3.1. Préparation des données 

Tel que mentionné, les imagettes satellites utilisées proviennent de l'API de Bing Maps sous forme 

de tuile de 256 x 256 pixels à un agrandissement de niveau 19 ce qui permet d’obtenir une 

résolution par pixel de 30 cm (Microsoft, 2019). Pour chaque site d’étude, une coordonnée 

géographique est d’abord utilisée afin de télécharger une tuile centrale. Ensuite, les tuiles 

environnantes sont acquises en fournissant un nombre équivalent de tuiles en x et en y. Par exemple, 

la zone d’étude à Akron en Ohio possède 45 tuiles de largeur et de hauteur. Les tuiles sont 

regroupées en une mosaïque pour former l’image couvrant la zone d’étude. Afin de retrouver une 

taille équivalente à celle utilisée pour l’entraînement du modèle CRESI, la mosaïque est segmentée 

en tuiles de 1300 x 1300 pixels (Etten, 2019) (figure 9). 

 

Figure 9. Mosaïque des tuiles d’images satellites 256 x 256 pixels et tuilage de la mosaïque 

en images de 1300 x 1300 pixels 

À partir de l’étendue des images satellites mosaïquées, les différents réseaux routiers peuvent être 

découpés. De plus, un nettoyage des données vectorielles est effectué. En effet, les différents 

réseaux routiers contiennent des données autres que des routes ainsi que des types de classe de 

route non pertinente au projet tel que des pistes cyclables, voies piétonnes, des stationnements, etc. 

Ces entités ont été supprimées puisqu'elles ne serviront pas à la comparaison finale avec la sortie 

du modèle.  

3.3.2. Extraction des routes et prédiction des limites de vitesse 

La méthode employée dans le SpaceNet 5 Challenge permet d’extraire le réseau routier d’une 

image satellitaire en plus de déterminer une classe de vitesse pour chacun des segments de route. 

Pour ce faire, une segmentation sémantique est effectuée en utilisant un réseau neuronal convolutif 

(CNN), soit le modèle CRESIv2 préentraîné. Ce modèle a été entraîné à partir d’images satellites 
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et de réseaux routiers vectoriels de 4 villes à travers le monde, soit Moscou, Mumbai, San Juan et 

Dar es Salam (tableau 9). Les images proviennent du satellite WorldView-3 à différents angles hors 

nadir en fonction de la ville. Les images possèdent 8 bandes spectrales de 16 bits, mais seulement 

les canaux RVB à 30 cm de résolution spatiale sont retenus. De plus, les images ont été converties 

en 8 bits et segmentées en tuiles de 1300 x 1300 pixels (Etten, 2020). 

Tableau 9. Données utilisées à l’entraînement du modèle CRESIv2 

Ville Date 
Routes  

(km) 

Aire des images 

(km2) 

Angle nadir 

(degré) 

Moscou (Russie) 13-02-2018 3,066 1,353 22.4 

Mumbai (Inde) 06-01-2018 1,951 1,021 8.6 

San Juan (Porto Rico) 05-04-2017 1,139 285 8.4 

Dar es Salam (Tanzanie) - - - - 
Tableau tiré de Etten (2020). 

Les réseaux routiers utilisés pour l’entraînement ont été étiquetés par l’équipe du SN5, et ce à partir 

d’attributs qualitatifs, soit la classe de route, le type de chaussé, le nombre de voies, le type de 

division d’autoroute et la présence ou non de pont. En fonction des valeurs affectées pour chacun 

de ces attributs, une classe de limite de vitesse a été déterminée (Etten, 2020).  

Dans le contexte de la compétition, une série d'essais visant à maximiser les performances a mené 

vers la détermination d’une architecture et de paramètres optimaux pour la conception du modèle. 

Pour ces tests, le score APLStime maximal atteint est de 48.11, obtenu avec un ensemble de 8 

modèles : 4 utilisant l'architecture ResNet50 couplée à un encodeur/décodeur UNet et 4 autres 

utilisant SE-ResNeXt50 avec un encodeur/décodeur UNet. L’inconvénient de cette composition 

d’architectures réside en un temps d'inférence relativement lent de 1,53 km²/min. Le meilleur 

compromis entre un score APLStime élevé et le temps d’inférence le plus rapide consiste en 

l’utilisation du modèle de base de CRESI, qui utilise l’architecture ResNet34 combinée à un 

encodeur/décodeur U-Net. Ce modèle permet d’obtenir un score d’APLStime de 45.35 et un temps 

d’inférence de 9.44 km2 / min (tableau 10) (Etten, 2020). Plus spécifiquement, un saut de 

connexion est effectué à chaque couche du réseau et un optimisateur Adam est utilisé pour 

minimiser la fonction de perte. De plus, la fonction de perte utilisée combine la perte focalisée et 

le coefficient de Dice avec une pondération de 75 % pour la perte focalisée et 25 % pour le 

coefficient de Dice (Etten, 2020). Dans le cadre de cet essai, le modèle de CRESI a été retenu pour 

sa précision lors de l’inférence et sa rapidité d’exécution.  
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Tableau 10. Résultats des 5 meilleurs modèles lors du SpaceNet 5 Challenge 

 

Tableau tiré de Etten (2020). 

 

Une fois les tuiles d’images satellites de 1300 x 1300 pixels intégrés au sein du modèle, celui-ci 

génère un masque de segmentation comportant 8 canaux. Les 7 premiers canaux représentent une 

classe d'intervalle de limite de vitesse en mph à l’exception du dernier canal qui contient 

l'agrégation des 7 canaux (figure 10). Le masque 0 contient la classe des routes prédites de 1 à 17,5 

mph et le masque 6, les vitesses de 61 à 70 mph. Ensuite, le dernier canal de chacune des tuiles est 

regroupé et normalisé afin de correspondre à la taille initiale du site d’étude (figure 11). 

 

Les 8 masques de segmentation en sortie du modèle CRESI pour une tuile à Akron en Ohio. Les 

7 premiers masques représentent les classes d’intervalle de limites de vitesse alors que le dernier 

est l'agrégation de ces masques. 

Figure 10. Masques de segmentation en sortie du modèle CRESIv2 
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Figure 11. Segmentation des routes de l’image satellite à Akron en Ohio. 

 

L’estimation des limites de vitesse est générée lors des prédictions de routes générées par le modèle. 

En effet, lorsque le modèle détecte une route à partir des images satellites, une valeur de confiance 

de route est attribuée à chacun des pixels de cette route. Une fois le graphe créé, pour chacun des 

centroïdes des arêtes, une fenêtre de 8 x 8 pixels est analysée pour retrouver le masque d’intervalle 

de vitesse qui contient la majorité de pixels de confiance de route. La vitesse est alors assignée au 

graphe en prenant la valeur centrale de l'intervalle de vitesse du masque. Par exemple, si la majorité 

des pixels de la fenêtre se trouve dans le masque 6 (61-70 mph), la limite de vitesse assignée sera 

65 mph (Etten, 2020).   
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3.3.3. Post-traitements et préparation à l’analyse 

L’inférence, dans le cas de la prédiction des routes, a tendance à occasionner des variations abruptes 

et du bruit dans les masques générés. De plus, les frontières y sont parfois irrégulières. Afin de 

pallier ces problèmes, un lissage par filtre gaussien avec un noyau de 2 mètres est appliqué, soit 

par fenêtre d’environ 7 x 7 pixels. De plus, un lissage est appliqué permettant d’éliminer la présence 

de trous et de petits objets de moins de 30 m2 (figure 12). Le masque raffiné est ensuite transformé 

afin que le réseau routier soit sous forme squelettique. Cette forme squelettique réduit le réseau 

routier à une taille d’un pixel. De plus, l’image est binarisée de sorte que les valeurs nulles ou 

aberrantes soient considérées comme de l’arrière-plan (figure 13). Cette étape est nécessaire pour 

la construction du graphe, permettant de stocker les attributs en lien avec le réseau routier.       

 

Le masque de segmentation en sortie du modèle (a) et le raffinement appliqué (b). Figure tirée de 

Etten (2020).  

Figure 12. Processus de raffinement du masque de segmentation en sortie du modèle 

CRESIv2  

 

Le masque raffiné (a) et la squelettisation du masque (b). Figure tirée de Etten (2020). 

Figure 13. Processus de squelettisation du masque raffiné en sortie du modèle CRESIv2  
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Le graphe produit à partir du squelette du réseau routier s’effectue avec la librairie sknw ce qui 

génère une structure graphique NetworkX (figure 14). Cette structure permet la création de 

sommets entre les arêtes, soit la segmentation du réseau routier. Un nettoyage est effectué afin de 

retirer les petites arêtes non connectées ainsi que les sous-graphes.   

 

Squelette du masque (a) et transformé en graphe (b). Figure tirée de Etten (2020). 

Figure 14. Processus de transformation du Squelette du masque en graphe  

 

Afin de permettre la comparaison des graphes produits par le modèle aux différents réseaux routiers 

des sites d’études possédant les limites de vitesse réelles, les graphes ont été transformés en un 

format de données permettant une visualisation géoréférencée dans un SIG, soit en format Geojson. 

Ensuite, pour chaque segment du graphe, une recherche par proximité à une distance maximale de 

5 m est effectuée avec le réseau routier du site d’étude correspondant. Ainsi, cela permet de 

retrouver une correspondance entre les deux couches de données et d’y joindre l’attribut de la vraie 

vitesse provenant des différentes sources de données. Lorsqu’il n’y a pas de correspondance ou 

lorsqu’il n’y a pas de vitesse disponible dans les données réelles, les segments du graphe sont tout 

simplement retirés. De plus, une vérification manuelle est effectuée lorsqu’un segment du graphe 

à plusieurs voisins provenant du réseau routier véritable. Cela permet d’éviter les jointures 

multiples et de fausser les résultats.  

Dans la couche de données issue de la jointure des deux réseaux routiers, une transformation des 

limites de vitesse est effectuée. En effet, comme les limites de vitesse produites par le modèle sont 

définies en 6 classes distinctes, il est nécessaire de convertir les limites de vitesse des réseaux 

routiers véritables afin de les rendre compatibles aux classes de vitesses obtenues en sortie du 

modèle (tableau 11). 
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Tableau 11. Classification des limites de vitesse 

Limites de 

vitesse 

(km/h) 

Limites de 

vitesse (mph) 
Classe de limites de vitesse du modèle 

(mph) 

< 33  < 21 17,5  

33-48 21-30 25  

49-64 31-40 35 

65-80 41-50 45 

81-96 51-60 55 

 > 96 > 60 65 
 

4. Résultats 

Dans cette section, les résultats obtenus à la suite de l’extraction des routes et de la prédiction des 

limites de vitesse sont d’abord présentés cartographiquement. Ensuite, il est question d’une 

évaluation comparative des limites de vitesse entre les réseaux routiers véritables et les réseaux 

routiers extraits.  

4.1. Réseaux routiers extraits et limites de vitesse 

Les différents réseaux routiers extraits à partir du modèle de segmentation CRESIv2 sont 

représentés avec l’image satellite qui a servi d’intrant au modèle (figures 15 à 18). Au total, le 

nombre de segments extraits par zone d’étude est de 2100 à Montréal, 1270 à Sherbrooke, 2500 à 

Akron et 1329 à Keasbey. Les vitesses prédites en mph suivent la classification utilisée lors du 

SpaceNet 5 Challenge, soit de 17,5 mph à 65 mph. Dans la légende de chacune des figures, le 

nombre d’entités par classe de vitesse y est inscrit. On observe que la majeure partie des routes 

extraites pour chaque site d’étude se trouvent dans la classe de vitesse 17,5 mph, et au contraire, 

une très faible proportion dans la classe 65 mph (tableau 12).  
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Figure 15. Réseau routier extrait et limites de vitesse classifiées à Montréal 
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Figure 16. Réseau routier extrait et limites de vitesse classifiées à Sherbrooke 
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Figure 17. Réseau routier extrait et limites de vitesse classifiées à Akron 
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Figure 18. Réseau routier extrait et limites de vitesse classifiées à Keasbey 

 

Tableau 12. Répartition des routes prédites par classe de vitesse pour chaque site d’étude 

Classe de vitesse (mph) 

Ville 

17,5 25 35 45 55 65 Total 

Montréal (CA) 1150 340 266 173 151 20 2100 

Sherbrooke (CA) 710 378 86 37 57 2 1270 

Akron (É-U) 1512 326 338 171 131 22 2500 

Keasbey (É-U) 622 234 211 68 143 51 1329 
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4.2. Évaluation des estimations de limites de vitesse 

L’évaluation des estimations de limites de vitesse est effectuée à partir des réseaux routiers prédits 

par le modèle auxquels les réseaux routiers véritables sont joints par la proximité des segments. Il 

est important de rappeler que les segments non joints, ainsi que les segments ayant plusieurs 

correspondances sont filtrés manuellement afin de conserver ce qui peut être comparé ce qui 

explique une différence dans le nombre total de routes. Pour chaque site d’étude, une matrice de 

confusion est calculée afin de mettre en évidence les classes de vitesse correctement prédites en 

fonction des classes de vitesse réelles. De plus, un tableau présente le pourcentage de bonnes 

prédictions par type de route. Il s’en suit des calculs des métriques MAE et RMSE qui permettent 

d’obtenir une évaluation générale de la qualité des prédictions.    

Dans le premier site d’étude, à Montréal, 502 routes (32 %) ont été bien classifiées sur un total de 

1563 (figure 19). Le modèle a particulièrement bien performé pour la classe de vitesse 17,5 mph. 

En effet, sur les 900 segments de route de cette classe, 417 ont été correctement prédits d’autant 

plus que 278 segments se trouvent dans la classe voisine de 25 mph. Ces valeurs bien prédites 

proviennent en grande partie de la classe de route résidentielle avec ces 397 routes correctement 

inférées ce qui représente 79 % des bonnes prédictions du réseau routier (tableau 13). En ce qui 

concerne les autres classes de vitesse, le modèle a connu des difficultés puisqu’il a surestimé les 

vitesses alors qu’il n’y avait aucune vitesse réelle de la classe 55 mph et la classe 65 mph.  

 

Figure 19. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses 

réelles à Montréal 
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Tableau 13. Répartition des prédictions de classes de vitesse en fonction du type de route à 

Montréal. 

Type de route Prédictions 

incorrectes 

Prédictions 

correctes 
Total 

% 

correctes 

Autoroute 46 10 56 18 

Lien autoroutier 83 5 88 6 

Primaire 56 1 57 2 

Résidentielle 454 397 851 47 

Secondaire 325 47 372 13 

Lien secondaire 6 4 10 40 

Voie de service 3 5 8 63 

Tertiaire 52 12 64 19 

Nationale 1 0 1 0 

Lien national 10 0 10 0 

Non classifiée 25 21 46 46 

 

Dans le cas de la ville de Sherbrooke, seulement 77 routes sur 770 ont reçu la bonne classe de 

vitesse, soit 10 % du réseau routier (figure 20). De plus, 70 des 77 routes bien prédites se trouvent 

dans une seule classe, soit 35 mph. Dans ce cas-ci, le modèle a eu tendance à sous-évaluer la vitesse, 

notamment pour la classe de vitesse réelle 45 mph et 65 mph où le modèle à prédit des vitesses de 

17,5 mph. La répartition des prédictions en fonction des types de routes montre que c’est la classe 

locale qui a le plus faible pourcentage de valeurs correctement prédites avec 3 % d’autant plus que 

cette classe contient plus de la moitié des routes (53 %) (tableau 14). La classe où le modèle a le 

mieux performé est la classe collectrice avec 32 % de valeurs correctes, soit 4 % du total des routes.  

 

Figure 20. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses 

réelles à Sherbrooke 
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Tableau 14. Répartition des prédictions de classes de vitesse en fonction du type de route à 

Sherbrooke 

Type de route Prédictions 

incorrectes 

Prédictions 

correctes 
Total 

% correctes 

Artère 159 26 185 14 

Autoroute 60 7 67 11 

Chemin privé 12 1 13 8 

Collectrice 66 31 97 32 

Locale 396 12 408 3 

 

Pour la première ville aux États-Unis, à Akron, 27 % des routes ont été correctement prédites 

(figure 21). Pour cette ville, la majorité des bonnes prédictions sont attribuées à la classe 25 mph 

avec 175 bonnes prédictions. De plus, la classe de vitesse réelle 55 mph est bien prédite à 56 % 

avec 92 bonnes prédictions sur 163. La majorité des erreurs de prédictions sont attribuées à la classe 

réelle de 25 mph, ce qui représente 53 % des routes de ce réseau routier. Pour les types de routes, 

les autoroutes sont bien prédites à 66 % et les routes résidentielles à 42 % (tableau 15). Quant aux 

routes primaires, elles obtiennent 8 % ce qui a un fort impact puisque cela représente 20 % des 

routes au total. 

 

Figure 21. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses 

réelles à Akron 
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Tableau 15. Répartition des prédictions de classes de vitesse en fonction du type de route à 

Akron 

Type de route Prédictions 
incorrectes 

Prédictions 
correctes 

Total 
% correctes 

Autoroute 38 74 112 66 
Lien autoroutier 58 24 82 29 
Primaire 254 22 276 8 
Lien primaire 2 0 2 0 
Résidentielle 173 123 296 42 
Secondaire 191 44 235 19 
Tertiaire 149 42 191 22 
Lien tertiaire 5 0 5 0 
Non classifiée 38 12 50 24 

 

Pour la deuxième ville aux États-Unis, à Keasbey, très peu de bonnes prédictions sont générées. En 

effet, seulement 107 (17 %) de bonnes classes de vitesse sont prédites sur un total de 643 (figure 

22). La majorité des bonnes classes de vitesse se trouvent dans la classe 25 mph (53 routes) et 55 

mph (37 routes) ce qui donne 14 % du total des routes. Cela est observable avec les types de routes 

puisque les routes résidentielles sont à 42 % et les autoroutes à 34 % de bonnes prédictions. On 

retrouve donc des valeurs très basses pour les autres types de routes (tableau 16).  

 

Figure 22. Répartition des prédictions de classe de vitesse en fonction des classes de vitesses 

réelles à Keasbey 
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Tableau 16. Répartition des prédictions de classes de vitesse en fonction du type de route à 

Keasbey 

Type de route Prédictions 

incorrectes 

Prédictions 

correctes 
Total 

% 

correctes 

Autoroute 69 35 104 34 

Lien autoroutier 69 8 77 10 

Primaire 6 0 6 0 

Résidentielle 61 45 106 42 

Secondaire 83 9 92 10 

Lien secondaire 38 1 39 3 

Voie de service 15 0 15 0 

Tertiaire 190 8 198 4 

Lien tertiaire 5 1 6 17 

 

Pour évaluer globalement les résultats obtenus, l’erreur absolue moyenne (MAE) et l’erreur 

quadratique moyenne (RMSE) sont calculées pour chaque zone d’étude (équations 1 et 2) (tableau 

17). Il en ressort que les sites avec un réseau routier plus dense, soit à Akron et à Montréal, 

obtiennent les meilleurs résultats avec une MAE de 8,67 mph et de 9,88 mph. Pour Keasbey et 

Sherbrooke, la MAE est plus élevée de quelques mph, soit 11,31 et 13,01 mph. Globalement, le 

modèle a prédit à environ 10,72 mph d’erreur selon le résultat moyen du MAE. En ce qui concerne 

les valeurs de RMSE, elles sont plus élevées ce qui montre l’importance des plus grands écarts 

entre les prédictions et les valeurs réelles. C’est particulièrement le cas pour Montréal où le RMSE 

est à 13,73, soit 3,85 mph de plus que la MAE. Pour les autres sites d’études, on perçoit une 

augmentation moyenne de 2,66 mph. Quant à la valeur moyenne de RMSE, elle se situe à 13,68 

mph.      

(1) MAE =
∑ ∣𝑛
𝑖=1 𝑦𝑖−𝑥𝑖∣

𝑛
 

(2) RMSE = √
∑ (yi−ŷ)

2n
i=1

n
 

 

Tableau 17. Résultats des métriques d’évaluation MAE et RMSE pour les différents sites 

d’études 

Ville Montréal Sherbrooke Akron Keasbey Moyenne 

MAE (mph) 9,88 13,01 8,67 11,31 10,72  

RMSE (mph) 13,73 15,44 11,56 13,96 13,68 
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5. Interprétation et discussion des résultats 

Ce chapitre traite d’abord de l’évaluation des objectifs de l’essai. Par la suite, les limites de la 

méthode sont exposées tout en fournissant des pistes d’amélioration du projet. 

5.1. Évaluation de l’atteinte des objectifs de l’essai 

L’objectif principal de ce projet visait à établir une méthodologie permettant d’estimer 

automatiquement les limites de vitesse des routes à partir d’images satellites. Pour atteindre cet 

objectif, plusieurs étapes secondaires ont été réalisées.  

Tout d’abord, il a fallu sélectionner une méthodologie appropriée, facile à reproduire. À cette fin, 

la méthode développée lors du SpaceNet 5 Challenge a été retenue. Cette méthode avait pour 

avantage d’extraire le réseau routier à l’aide d’un modèle de segmentation sémantique en plus de 

prédire les limites de vitesse de chacun des segments. De plus, le modèle CRESI final utilisé lors 

de la compétition était accessible en plus des programmes Python, nécessaire lors des étapes 

techniques. Ces éléments ont permis de reproduire la méthode efficacement et de vérifier son bon 

fonctionnement. 

Ensuite, quatre sites d’étude en Amérique du Nord ont été déterminés, soit Montréal, Sherbrooke, 

Akron et Keasbey. Ces sites ont été sélectionnés en raison de caractéristiques communes en lien 

avec leur réseau routier. En effet, on y retrouve des ouvrages spécifiques, tels que des ponts, des 

viaducs, des échangeurs et des autoroutes, ce qui les rend plus facilement comparables entre eux. 

Par ailleurs, les villes d’Akron et de Keasbey ont été choisies spécifiquement, car les données de 

l’entreprise E-SMART pour ces sites présentaient plusieurs limites de vitesse manquantes.  

Une fois la méthodologie appliquée à chacun des sites, 4 réseaux routiers ont été extraits 

comprenant des classes de limite de vitesse spécifique, soit 17,5 mph, 25 mph, 35 mph, 45 mph, 

55 mph et 65 mph. L’évaluation des prédictions de limite de vitesse s’est effectuée en comparant 

les réseaux extraits aux réseaux routiers réels provenant d’OpenStreetMap, de la ville de 

Sherbrooke et de l’entreprise E-SMART. Cela a été possible grâce à l’utilisation de l’outil de 

jointure par plus proches voisins de QGIS. Ainsi, une nouvelle couche de données a été créée pour 

chaque réseau routier extrait, permettant de retrouver les valeurs de limite de vitesse et de classe 

de route du réseau routier réel correspondant spatialement. De plus, il a été nécessaire de 

transformer les valeurs de limite de vitesse des réseaux réels afin de correspondre aux 6 classes de 
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vitesse des réseaux extraits. Cela a permis de ressortir les statistiques d’évaluation des prédictions 

des limites de vitesse. 

5.2. Limites et recommandations 

Plusieurs facteurs ont influencé les résultats obtenus autant pour la segmentation des routes que 

pour l’estimation des classes de limites de vitesse. Ces facteurs concernent les données 

d’entraînement du modèle, l’architecture du modèle d’apprentissage profond ainsi que la méthode 

employée pour comparer les réseaux routiers aux réseaux routiers véritables.  

Tout d’abord, le modèle conçu par l’équipe du SpaceNet 5 Challenge avait pour objectif d’être 

opérationnel à l’échelle mondiale. C'est pourquoi quatre sites à travers le monde avaient été 

sélectionnés pour l’entraînement du modèle CRESI. Bien que cela ait permis de créer un ensemble 

d’images satellites hétérogènes comportant différents contextes routiers, aucun des quatre sites ne 

se situait en Amérique du Nord.  De plus, les images d’entraînement possédaient des angles au 

nadir différents, variant de 8 à 22 degrés, comparativement aux images utilisées dans l’essai, qui 

sont strictement au nadir. Il est donc possible que le modèle n’ait pas eu suffisamment d’exemples 

similaires pour extraire les routes de manière optimale dans les différents sites d’études de cet essai. 

Cela est observable en majeure partie lorsqu'il s'agit d’architectures plus complexes telles que des 

ponts et des échangeurs d'autoroutes. Il serait donc intéressant pour l’entreprise E-SMART de tester 

l’entraînement d’un modèle comprenant des zones uniquement au Canada et aux États-Unis ou 

même au sein d’une seule province ou État afin d’en évaluer les résultats. Ensuite, le contexte du 

SpaceNet Challenge implique que les données vectorielles utilisées pour l’entraînement du modèle 

aient été étiquetées manuellement par l’équipe à l’interne. Cela implique la possibilité que des 

erreurs aient été introduites dans les réseaux routiers d'entraînements. D’une part, les limites de 

vitesse assignées proviennent d’une matrice d’attributs qualitatifs comme la classe de route, le 

nombre de voies, le type de chaussée, etc. D’autre part, ces limites de vitesse ne tiennent pas compte 

du cadre législatif propre à chaque emplacement, ce qui tend vers une généralisation des classes de 

vitesses.  

L’architecture utilisée dans le modèle CRESIv2 date de 2019. Avec l’apparition de nouveaux 

modèles et de techniques plus avancées en apprentissage profond, il serait pertinent de reproduire 

cette méthodologie en utilisant une architecture plus récente. Un tel modèle pourrait être entraîné 
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à partir d’images au nadir d’Amérique du Nord et de réseaux routiers dont les limites de vitesse 

proviennent de sources officielles. 

Un aspect supplémentaire à considérer dans l’évaluation des résultats est la méthode utilisée pour 

comparer les limites de vitesse prédites aux valeurs réelles. En effet, comme le réseau routier 

produit n’est pas superposable spatialement avec le réseau routier réel, une recherche par proximité 

a été effectuée afin de joindre les attributs des routes à moins de 5 m de distance. Cela implique 

que certaines routes n’ont pas été jointes avec la bonne correspondance. Ce problème survient 

notamment lorsqu’il y a des structures telles que des ponts, viaducs ou échangeurs et en présence 

d’intersections. Dans le cas où la mauvaise route jointe n’a pas la même limite de vitesse que la 

route qui aurait dû être jointe, cela fausse le résultat et a pour impact de diminuer le pourcentage 

de routes correctement prédites ainsi que d’augmenter les valeurs des métriques d’erreur MAE et 

RMSE. Il serait donc nécessaire d’élaborer une méthode afin de déterminer si la route extraite est 

comparée à la bonne route du réseau de vérité terrain.  

 

6. Conclusion 

Cet essai réalisé avec la collaboration de l’entreprise E-SMART avait pour but la mise en œuvre 

d’une méthodologie d’estimation de limites de vitesse d’un réseau routier à partir d’imagerie 

satellite. Plus spécifiquement, la méthode employée, soit celle du SpaceNet 5 Challenge extrait le 

réseau routier des images satellites en plus de déterminer une classe de vitesse potentielle grâce à 

un modèle de segmentation sémantique préentraîné. À partir de quatre sites d’études urbains en 

Amérique du Nord, soit Montréal, Sherbrooke, Akron et Keasbey, il a été possible d’y prédire la 

classe de vitesse des segments de route.  Les classes de vitesse des réseaux routiers extraits ont été 

comparées aux vitesses de jeux de données de réseau routier réel correspondant. Les résultats 

montrent qu’en moyenne, 22 % des vitesses prédites correspondent aux vitesses réelles. C’est à 

Montréal et à Akron que les meilleurs résultats ont été obtenus avec 32 et 27 % de vitesses bien 

prédites. Pour Keasbey et Sherbrooke, on retrouve plutôt 17 et 10 % de vitesses bien prédites. Tout 

de même, les métriques MAE et RMSE démontrent des résultats plus encourageants. En effet, en 

moyenne la MAE se trouve à 10,72 mph et la moyenne de RMSE se trouve à 13,68 mph. Ainsi, la 

vitesse prédite se trouve bien souvent à une classe de vitesse près de la bonne valeur. 
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Le principal facteur limitant de ce projet réside dans l’utilisation d’un modèle préentraîné sur des 

régions du monde autres que l’Amérique du Nord. L’entraînement d’un nouveau modèle basé 

uniquement sur des lieux situés en Amérique du Nord faciliterait considérablement l’estimation 

des limites de vitesse, notamment s’il était conçu spécifiquement pour un pays ou bien à l’échelle 

d’une province ou État. De plus, la méthode de comparaison des routes extraites à celles qui font 

office de vérités terrain pourrait être améliorée de sorte à réduire les erreurs venant de la jointure 

par proximité. 

Une autre approche intéressante pour estimer les limites de vitesse sur un réseau routier consisterait 

à utiliser un modèle basé sur les graphes. Cette technique innovante permettrait d’entraîner un 

modèle capable d’analyser les attributs des routes afin de prédire la limite de vitesse. De plus, le 

contexte de voisinage pourrait être exploité pour déterminer une valeur en fonction de 

l’environnement local d’une route.  

Pour conclure, l’estimation de limites de vitesse précises à partir d’imagerie satellitaire est une 

tâche plutôt ardue. C’est en quelque sorte ce qui explique la rareté de ce genre de projet dans la 

littérature actuelle. Tout de même, ce projet présente une méthode reproductible ayant un fort 

potentiel d’amélioration. 
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