In-gel Trypsin Digestion

(Boisvert Lab, December 2020) Adapted from Dr Angus Lamond Lab

Read first:

Remember to wear gloves at all times. Keratin contamination is less of any issue *after* peptide extraction, as whole keratin proteins will not interfere with MS analysis.

Peptides tend to stick to plastic surfaces on storage. We use 1.5 ml Eppendorf Protein loBind tubes (cat no. 2243108-1) that are designed for storing peptides at low concentrations.

When preparing stock solutions, clean spatulas thoroughly with water and ethanol. Even better, simply tip the solid chemical into clean Eppendorf tubes.

All solutions and reagents used (Water, acetonitrile, NH4HCO3) should be MS-grade quality.

Acetonitrile (CH₃CN) is light sensitive, so store in a dark bottle or tube wrapped in foil.

You should never use autoclaved tips. The water used for sterilisation is very dirty. Simply rack tips with gloves on in a clean box.

You should never use any container that has been washed with detergents. Either use new bottles or new 15/50 ml tubes.

Stage 1: If you are doing IP, first elute your IP samples from beads

NOTE: To improve elution of proteins from beads and to save time during the digestion, we now elute in SDS and then reduce and alkylate the proteins prior to running them on a gel.

- 1. Elute proteins from beads (sepharose, agarose, dynabeads, etc.) Add 1 volume of 1% SDS to the beads (e.g. $50 \,\mu l$ of 1% SDS to $50 \,\mu l$ of beads) and boil for $10 \,min$ at $95^{\circ}C$. Add 4 volumes of dH₂O (e.g. $200 \,\mu l$ of dH₂O to $50 \,\mu l$ of beads) and vortex well to elute proteins. Pellet the beads and collect the supernatant. This results in a more efficient release of proteins from the beads. Note: Save the beads and add sample buffer directly (e.g. $20 \,\mu l$ dH₂O plus $20 \,\mu l$ of 4X sample buffer) to elute any remaining proteins (can then run them on the same gel to see how much did not elute).
- 2. Speedvac the supernatant back down to the original volume (e.g. $50~\mu l$), which will take the SDS concentration back to 1%.
- 3. Alternatively, concentrate samples using microcon filters.

Stage 2: Reduction and Alkylation

Reduction and alkylation of cysteine residues using DTT and ClAA, respectively, improves the recovery of cysteine-containing peptides from in-gel digests and minimizes the appearance of unknown masses in MS analysis due to disulfide bond formation and side chain modification.

These steps can be performed in SDS-PAGE loading buffer (we usually use 4X NuPAGE LDS sample buffer from Invitrogen (NP0007) and then do the DTT and ClAA as described below, avoiding step 3.

- 1. Reduce the sample. Add DTT to a final concentration of 10 mM and boil for 1–2 min.
- 2. Alkylate the sample. Add chloroacetamide to a final concentration of 50 mM and incubate at room temperature in the dark for 30 min.
- 3. Add 4X NuPAGE LDS sample buffer (a few µl is fine).

Stage 3: Separating proteins on gels and excising bands

- 1. Separate your protein sample by 1D PAGE. We routinely use 4–12% gradient Novex precast gels. For a complicated sample run them all the way (200 V for 50 min) and cut the gel into 12-16 slices. For less complicated samples (e.g. IPs), we use straight percentage gels (usually 10% or 12%), run them halfway down (200V for 25 min) and cut the gel into 5–6 slices.
- 2. Stain the gel with Coomassie blue. We routinely use the SimplyBlue SafeStain solution from Invitrogen (LC6060; protocol on the bottle). To minimize contaminants, do all staining steps in a sterile 14-cm tissue culture dish. Destain the gel thoroughly in dH_2O (overnight). The gel can also alternatively be silver-stained.

DO NOT USE METHANOL/ACETIC ACID BASED COOMASSIE STAINING.

- 3. Scan the gel before cutting out the bands. To do that, put the gel into the cover of the 14-cm dish and scan it. Print out the scanned image so that you can mark on it where you cut the bands. The gel can be returned to the dH_2O -filled dish until ready to excise the bands.
- 4. Excising the bands from the gel. For this step, we transfer the gel to a clean 14-cm tissue culture dish and cut away the unnecessary parts (top, bottom, MW marker lanes) with a clean razor blade or scalpel, leaving only the lanes in which you are interested. If you want to identify proteins in a single Coomassie-blue-stained band, excise the gel as close to the band as possible, with no excess around the band (to ensure that proteins you identify are from that one band).
- 5. Mincing the gel bands. Once you have the slices cut out for a particular sample lane (and marked on the printout of the scanned gel), cut each slice into cubes 1 x 1 mm pieces using a fresh scalpel and transfer each slice into a 1.5 ml lobind Eppendorf tube.

The bands can be stored for later use at -20° C.

Note: If your gel is silver stained, add $50 \,\mu$ l/band of 15 mM potassium ferricyanide/50 mM sodium thiosulphate (Farmers reagent - made fresh from 2X stock solutions) for 5–10 min until the band pieces go clear (i.e. until all the silver is removed).

Stage 4: Destaining the gel bands

- 1. Wash the band pieces with 300 μ l of H₂O for 15 min. Add 300 μ l of CH₃CN and wash for a further 15 min.
- 2. Remove the supernatant (Use a P1000 tip with a P10 tip on the end, it is necessary because your gel pieces may be lost through the blue tips).
- 3. Wash the band pieces with 300 μ l of 20 mM NH₄HCO₃ (1M aliquots at -20° C that are to be diluted in MS water) for 15 min. Discard the supernatant.
- 4. Wash the band pieces with 300 μl of 20 mM NH₄HCO₃ / CH₃CN (50:50 v/v) for 15 min. The gel pieces should shrink and look opaque. Discard the supernatant.
- 5. If the band pieces are still blue, repeat the NH₄HCO₃ and NH₄HCO₃ / CH₃CN washes. (On adding NH₄HCO₃, the gel pieces should be restored to the original sizes and look transparent again).
- 6. Add 150 μ l of CH₃CN to dehydrate the band pieces for 5 min. The gel pieces should shrink and look completely white. Discard the supernatant. If not completely dehydrated, wash again with 100 μ l of CH₃CN.
- 7. Dry the band pieces in a Speedvac for 5 min.

Stage 4.1: Reduction /Alkylation of band pieces (optional)

This stage is only necessary if you did \underline{NOT} reduce/alkylate your sample prior to running the SDS-PAGE.

- 1. Add 50 µl/band of 10 mM DTT in 20 mM NH₄HCO₃.
- 2. Incubate at 56°C for 1 hour. Discard the supernatant.
- 3. Add 50 µl/band of either 50 mM freshly prepared chloroacetamide in 20 mM NH₄HCO₃.
- 4. Incubate at room temperature for 30 min. Discard the supernatant.
- 5. Wash the band pieces with 300 µl of 20 mM NH₄HCO₃ for 15 min. Discard the supernatant.

- 6. Wash the band pieces with 300 μ l of 20 mM NH₄HCO₃ / CH₃CN (50:50 v/v) for 15 min. Discard the supernatant.
- 7. Add 150 µl of CH₃CN to dehydrate the band pieces for 5 min. Discard the supernatant.
- 8. Dry the band pieces in a Speedvac for 5 min.

Stage 5: Digestion of band pieces

1. Add 50-75 μ l/band of 12.5 ng/ μ l of modified trypsin in 20 mM NH₄HCO₃. We use Trypsin Gold from Promega (V5280), which is supplied as 100 μ g of powder. We resuspend it at 1 μ g/ μ l as our stock solution (i.e. add 100 μ l of 50 mM acetic acid (see note) to the 100 μ g powder in the vial, and store it at -80° C in 5 μ l aliquots). Trypsin is not stable especially when pure and in non-acidic condition, so we dilute down from this stock solution just before use. We routinely use 50-75 μ l/band of a freshly prepared 12.5 ng/ μ l stock in 20 mM NH₄HCO₃.

(Resuspend a 5 µl trypsin aliquot in 400 µl of 20 mM NH4HCO3 to obtain 12.5 ng/µl).

- 2. Allow bands to rehydrate in trypsin digestion buffer. The gel pieces should be restored to the original sizes, and there should be JUST enough trypsin solution to cover all the gel pieces.
- 3. Incubate at 30°C overnight (>16h).

Stage 6: Extraction of peptides

Perform all the gel washing extraction steps on a Thermo Mixer at approximately 850 RPM to ensure complete extraction of peptides.

- 1. Add an equal volume (e.g. 50-75 µl) of CH₃CN to the digest.
- 2. Incubate at 30°C for 30 min.
- 3.Transfer supernatant to a new clean Eppendorf loBind tube. This supernatant contains the peptides you are going to analyze.
- 4. Add the same 50-75 μ l of 1% formic acid to the gel pieces. Incubate for 20 min. Prepare the 1% formic acid solution fresh in the fume hood, by adding 0.5 ml of 100% formic acid (BDH cat. no. 101155F) to 49.5 ml of dH₂O.
- 5. Transfer supernatant to the tube at step 3.
- 6. Repeat steps 4 and 5 once more.

- 7. Add 150 μ l of CH₃CN to the gel pieces. The gel pieces should shrink and turn white. Incubate for 10 min.
- 8. Transfer supernatant to the tube at step 3. If not completely dehydrated, repeat step 7.
- 9. Speedvac to dry the peptides in the tube at step 3 completely (60°C is fine).
- 10. Resuspend the (invisible) pellet with 30 μ l of 0.1% TFA.
- 11. Clean samples using ZipTips.