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Summary

For exponentially distributed lifetimes, we consider the prediction of future order statistics based on having
observed the �rst m order statistics. We focus on the previously less explored aspects of predicting: (i)
an arbitrary pair of future order statistics such as the next and last ones, as well as (ii) the next N future
order statistics. We provide explicit and exact Bayesian credible regions associated with Gamma priors,
and constructed by identifying a region with a given credibility 1−λ under the Bayesian predictive density.
For (ii), the HPD region is obtained, while a two-step algorithm is given for (i). The predictive distributions
are represented as mixtures of bivariate Pareto distributions, as well as multivariate Pareto distributions.
For the non-informative prior density choice, we demonstrate that a resulting Bayesian credible region has
matching frequentist coverage probability, and that the resulting predictive density possesses the optimality
properties of best invariance and minimaxity.

AMS 2020 subject classi�cations: 62F15, 62N01, 62N05, 62C10, 62C20.

Keywords and phrases: Bayesian predictive density; Credibility; Coverage probability; Mixtures; Multivari-
ate Pareto; Prediction region; Type-2 censoring.

1. Introduction

Predictive analysis based on censored data in life testing experiments is fundamental and leads to interesting
challenges. In this work, we are concerned with prediction regions for future order statistics based on the
�rst m order statistics generated by exponentially distributed data. There has been some previous work
on such problems, but we focus here on the less explored: (a) multivariate aspects, and (b) use of Bayesian
predictive densities to generate prediction regions and their related theoretical properties.

We consider an i.i.d. sample of size n from an exponential distribution with density θe−θtI(0,∞)(t), but
we are only able to observe the �rst m order statistics X1:n, . . . , Xm:n, commonly referred to as type-II
censoring. Our objectives include:

(I) the joint prediction of two future order statistics Xr:n and Xs:n, with m < r < s ≤ n, as well as

(II) the joint prediction of the next N order statistics with 2 ≤ N ≤ n−m.

Scenario (II) seems a natural one to consider and includes the case of all future order statistics with
N = n−m. Scenario (I) in more relevant in situations where the focus is for instance on the next and last
order statistics (i.e., r = m+1, s = n), or the last two order statistics (i.e., r = n−1, s = n). Obviously, both
scenarios overlap for N = 2. Surprisingly perhaps, for Gamma priors which we consider, the speci�cation of
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Bayesian predictive densities and regions leads to more complex representations in the bivariate case. The
bivariate case (I) was considered recently by Bagheri et al. (2022) and we refer to this work for further
motivation and historical aspects of the problem. Their prediction regions are non-Bayesian however and
based on a pair pivotal quantities which will not arise as a Bayesian solution.

It seems natural to generate prediction regions for future order statistics via a Bayesian predictive density,
but such problems seem to have been relatively unexplored. An exception is given by Dunsmore (1974), but
his work concerns a single order statistic. We proceed in doing so for Gamma prior densities as well as the
non-informative density π0(θ) =

1
θ I(0,∞)(θ). The obtained expressions are quite tractable and, interestingly,

bring into play �nite mixtures of bivariate Pareto distributions, and multivariate Pareto distributions. The
obtained mixtures are �non-probabilistic� in the sense that the coe�cients ai in

∑
i aifi(t); the fi's being

densities; take on both positive and negative values. This aspect is less appreciated than �probabilistic
mixtures�, but it does not hinder the usefulness of the representation for computational purposes of moments
and cumulative distributions functions.

For a given credibility 1 − λ, we fully describe the highest posterior density (HPD) prediction region for
scenario (II), while we propose an algorithm to generate exact prediction regions for the bivariate scenario
(I), based on a natural decomposition of the joint predictive density into its marginal and conditional parts.
The analysis is carried out and much facilitated by considering the prediction of spacings between future
order statistics, which can be converted back to the prediction of the order statistics themselves.

Many of the recent studies on predictive density estimation focus on theoretical properties of the density
itself in a decision-theoretic context. For scenarios (I) and (II), we report on the best invariant and minimax
properties for Kullback-Leibler divergence loss of the Bayesian predictive density associated with the usual
non-informative prior density π(θ) = 1

θ , attributable to the work of Liang & Barron (2004). Moreover,
we show that the frequentist probabilty of coverage for a prediction region generated by such a Bayesian
predictive density matches its exact credibility. Therefore, such a Bayesian density not only possesses
optimality properties in a decision-theoretic framework, but also provides a satisfactory frequentist option
that compares favourably with previous solutions (e.g., Bagheri et al., 2022).

The organization of the manuscript is as follows. The preliminary results of Chapter 2 cover model densities
for scenarios (I) and (II), some general aspects on Bayesian predictive densities, and multivariate Pareto
distributions. Bayesian predictive densities and regions are derived and illustrated in Section 3. In Section
4, we demonstrate in a more general context including ours that a Bayesian credible region with credibility
1−λ associated with the non-informative prior density π0 yields matching frequentist coverage probability
1−λ for all θ > 0. Finally in Section 5, we concisely review optimality properties of the Bayesian predictive
densities again associated with density π0 and pertaining to the best invariant and minimaxity properties.

2. Preliminary results

2.1. Model densities

For the �rst m order statistics X1:n, . . . , Xm:n among n generated from i.i.d. Exp(θ) data, it is well known
(e.g., Lawless (1971)) X =

∑m
i=1Xi:n + (n − m)Xm:n is a su�cient statistic and Gamma distributed

G(m, θ). Hereafter, we therefore consider such a summary and corresponding density, that is

X ∼ θm

Γ(m)
xm−1 e−θx I(0,∞)(x). (2.1)
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For the prediction of Xr:n and Xs:n based on X, it is convenient and equivalent to consider

Y = (Y1, Y2)
⊤ with Y1 = Xr:n −Xm:n, Y2 = Xs:n −Xr:n. (2.2)

The equivalence stems from the correspondence between a prediction regionR for Y and the inverse mapping
{(y1 + xm:n, y1 + y2 + xm:n) : (y1, y2) ∈ R} as a prediction region for (Xr:n, Xs:n).

For the multivariate version where the objective is to predict jointly the N next future order statistics, it
is analogously useful to consider

Z = (Z1, . . . , ZN ) , with Zi = Xm+i:n −Xm+i−1:n for i ∈ {1, . . . , N}, 2 ≤ N ≤ n−m, (2.3)

as the objects of prediction.

As described with the next result, both transformations (2.2) and (2.3) lead to convenient underlying model
densities for Y or Z.

Lemma 2.1. Given set-up (2.1, 2.2, and 2.3) and �xed θ:

(a) Y and X are independently distributed;

(b) Z and X are independently distributed;

(c) Y1 and Y2 are independently distributed with joint density on R2
+ given by qθ(y) = θ2 q1(θy1, θy2) and

with

q1(y) =
(n−m)!

(r −m− 1)! (s− r − 1)! (n− s)!

(
1− e−y1

)r−m−1 (
1− e−y2

)s−r−1
e−(n−r+1)y1−(n−s+1)y2 ;

(2.4)

(d) Z1, . . . , ZN are independently distributed with Zi ∼ Exp
(
(n−m− i+ 1) θ

)
.

Proof. Part (b) follows from a familiar renewal property of the exponential distribution, and furthermore
implies (a) since Y is a function h(Z) of Z. For (c), since (U = Xr:n −Xm:n, V = Xs:n −Xm:n) and Xm:n

are independently distributed, the distribution of (U, V ) matches that of its conditional distribution given
Xm:n, and the latter joint distribution can by seen to be equivalent, with the above-mentioned renewal
property, to that of the (r − m)th and (s − m)th order statistics from a sample of size n − m from an
Exp(θ) distribution. Such a joint density is given by

f(u, v) =
(n−m)!

(r −m− 1)! (s− r − 1)! (n− s)!

(
1− e−θu

)r−m−1 (
e−θu − e−θv

)s−r−1
(e−θv)n−s θ2 e−θ(u+v),

(2.5)
for 0 < u < v. The result follows by transforming (U, V ) to Y . Finally for (d), since Z and Xm:n are
independently distributed, the distribution of Z matches that of its conditional distribution given Xm:n,
and as above the latter joint distribution matches that of the distribution of the �rst N order statistics
spacings from a sample of size N from an Exp(θ) distribution. It is well known that such order statistics
spacings are independently distributed as Exp

(
(n−m− i+ 1)θ

)
(e.g., Lehmann & Casella, 1998, problem

6.18, page 71) which yields the result.

Remark 2.1. The marginal densities of Y1 and Y2 in (2.4) can be extracted from part (c) and are of the

form B−1(c1, c2) (1 − e−u)c1−1 e−c2u I(0,∞)(u), with B(c1, c2) the Beta function. An alternative and readily

veri�ed representation for the distribution of the above Y1 and Y2 is:

e−θY1 ∼ Beta(n− r + 1, r −m) , e−θY2 ∼ Beta(n− s+ 1, s− r) independent .
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2.2. Bayesian predictive densities

A general set-up for predictive density estimation relates to the following model density:

(X,Y )|θ ∼ pθ(x) qθ(y|x) , x ∈ Rd1 , y ∈ Rd2 .

We observe X according to pθ and we wish to estimate the density qθ(·|x). Except for θ, the densities
are known. The observed X provides information about θ and determines the conditional density qθ(·|x)
to estimate. Much, but not all (e.g., Fourdrinier et al. 2019), previous work on properties of predictive
densities focusses on models for which X and Y are conditionally independent, i.e., qθ(·|x) ≡ qθ(·) for all
x, but it is natural in general to estimate the density qθ(·|x) when there is dependence.

Assume that we have a prior density π for θ, and a resulting posterior density π(·|x) taken to be absolutely
continuous with respect to measure ν. A natural estimator of the density qθ(·|x) is the Bayes predictive
density given by the conditional density q(·|x) of Y |X = x. Integrating out θ, we obtain the estimator

q̂π(y|x) =

∫
Θ
qθ(y|x)π(θ|x) dν(θ). (2.6)

The above is a fully Bayesian procedure that can be used for obtaining predictive point estimates or
prediction regions for Y . The estimator or density q̂π(·;X) will naturally depend on X through a su�cient
statistics T (X).

2.3. Multivariate Pareto densities

The predictive densities that we elicit below bring into play univariate, bivariate, and multivariate type
II Pareto distributions, as well as non-probabilistic mixtures of such distributions. Such distributions
have been extensively studied (see for instance Section 52.4 of Kotz et al. 2000, or Arnold 2014, and the
references therein). With convenient expressions for the moments and cumulative distribution functions
(c.d.f.'s) relative to the fi's, the mixture representations clearly facilitate expressions for moments and
c.d.f.'s for the full distribution.

Multivariate Pareto distributions possess Pareto marginals with parameters ℓ, h > 0, densities and survival
functions, which we denote and write as

fℓ,h(t) =
ℓ h

(1 + ht)ℓ+1
I(0,∞)(t) , and F̄l,h(t) = (1 + ht)−ℓ , (2.7)

for t > 0, respectively. Here is a multivariate Pareto de�nition; which includes the bivariate case; and some
useful properties.

De�nition 2.1. A random vector Z = (Z1, . . . , ZN )⊤ has a multivariate Pareto type II distribution, denoted

Z ∼ P2(m,h1, . . . , hN ) when it has density

gm,h1,...,hN
(z) =

(m)N
∏N

i=1 hi

(1 +
∑N

i=1 hizi)
m+N

IRN
+
(z), (2.8)

for parameters h1, . . . hN ,m > 0, and (m)N = Γ(m+N)
Γ(m) .

Such distributions form a N + 1 parameter family with scale parameters 1/hi, i = 1, . . . , N , and shape
parameterm. As recorded with the following lemma containing a selection of properties that are known and
readily veri�ed, such multivariate Pareto distributions possess univariate Pareto marginals and conditionals,
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subvectors that are also distributed as multivariate Pareto with densities, and a joint survival function
having a rather simple form.

Lemma 2.2. Consider Z ∼ P2(m,h1, . . . , hN ). Let i ̸= j. Then, we have: (i) Zi ∼ fm,hi
, (ii) Zj |Zi =

zi ∼ fm+1,hj/(1+hiz1), (iii) (h1Zi, . . . , hNZN ) has density gm,1,...,1, (iv) the joint survival function is given

by P(∩N
i=1{Zi ≥ zi}) = {(1 +

∑N
i=1 hizi)}−m for zi ≥ 0, i = 1, . . . , N , (v) the simple regressions are linear

with (vi) E(Zj |Zi) = 1+hiZi
hjm

, and (vi) the correlation between Zi and Zj is given by ρ(Zi, Zj) = 1
m for

m > 2.

Furthermore, we will require the following.

Lemma 2.3. Let Z ∼ P2(m,h1, . . . , hN ) and W =
∑N

i=1 hiZi. Then W is Beta type-II distributed (denoted

W ∼ B2(N,m)) with p.d.f. fW (w) = Γ(N+m)
Γ(N)Γ(m)

wN−1

(1+w)N+m , for w ∈ (0,∞).

Proof. The result is known but we provide a proof for completeness. Given the multivariate Pareto
representation (h1Z1 . . . , hNZN ) =d (E1

G , . . . , EN
G ) with E1, . . . EN , G independently distributed, and with

Ei ∼ Exp(1) and G ∼ G(m, 1), we see that W is distributed as the ratio of two independent G(N, 1) and
G(m, 1) variables, hence Beta type II with the given parameters.

3. Predictive densities and regions

Based on X as in (2.1), we provide in this section Bayesian predictive densities and regions for Y and Z
as de�ned in (2.2) and (2.3). We consider Gamma G(α, β) prior densities πα,β(θ) ∝ θα−1 e−βθ I(0,∞)(θ),
including the usual non-informative case π0(θ) = 1

θ I(0,∞)(θ) for α = β = 0.

3.1. Predictive densities

We begin with the future next N order statistics.

Theorem 3.1. The Bayes predictive density of Z in (2.3), based on X ∼ G(m, θ) and prior density πα,β
for θ, is that of P2(m+ α, h1, . . . , hN ) distribution with hi =

n−m−i+1
x+β for i = 1, . . . , N .

Proof. With qθ(z|x) = θN (n−m)!
(n−m−N)! e

−θ
∑N

i=1(n−m−i+1)zi and θ|x ∼ G(α+m,x+ β), we obtain from (2.6):

q̂πα,β
(z|x) =

(n−m)! (β + x)α+m

(n−m−N)! Γ(α+m)

∫ ∞

0
θN+α+m−1 e−θ

(
β+x+

∑N
i=1(n−m−i+1)zi

)
dθ

=
(n−m)! (β + x)α+m

(n−m−N)! Γ(α+m)
Γ(N + α+m)

{
β + x+

N∑
i=1

(n−m− i+ 1)zi
}−(N+α+m)

,

which is indeed a P2(m+ α, h1, . . . , hN ) density.

Observe that the density has univariate Pareto marginals and multivariate Pareto distributed subvectors
in accordance to Lemma 2.2.

We now turn to the Bayesian predictive density for two future order statistics and demonstrate a non-
probabilistic mixture of bivariate Pareto densities as given in De�nition 2.1 for N = 2.
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Theorem 3.2. The Bayes predictive density of Y in (2.2), based on X ∼ G(m, θ) and prior density πα,β
for θ, is given by

q̂πα,β
(y|x) =

r−m−1∑
i=0

s−r−1∑
j=0

ωi,j g
m+α,

ai
x+β

,
bj

x+β

(
y
)
, (3.9)

with g a bivariate Pareto density given in (2.8) for N = 2,

ai = n− r + i+ 1, bj = n− s+ j + 1, and ωi,j =
(n−m)!

(n− s)!

(−1)i+j

i! j!

1

(r −m− i− 1)! (s− r − j − 1)!

1

aibj
.

Proof. From (2.4) and (2.6), with θ|x ∼ G(m+ α, x+ β), we obtain

q̂πα,β
(y|x) =

(n−m)!

(n− s)!

(x+ β)m+α

Γ(m+ α)

∫ ∞

0
θm+α+1 (1− e−θy1)r−m−1

(r −m− 1)!

(1− e−θy2)s−r−1

(s− r − 1)!
e−θ(L(y)+x+β) dθ,

with L(y) = (n − r + 1)y1 + (n − s + 1)y2. Binomial expansions and an interchange of sum and integral
yield

q̂πα,β
(y|x) =

(x+ β)m+α

Γ(m+ α)

r−m−1∑
i=0

s−r−1∑
j=0

aibj ωi,j

∫ ∞

0
θm+α+1 e−θ(L(y)+iy1+jy2+x+β) dθ

= (m+ α) (m+ α+ 1) (x+ β)m+α
r−m−1∑
i=0

s−r−1∑
j=0

aibj ωi,j

(
L(y) + iy1 + jy2 + x+ β

)−(m+α+2)
,

which leads to (3.9).

We point out the following result for the next two order statistics, which follows immediately from either
Theorem 3.1 or Theorem 3.2.

Corollary 3.1. For the particular case where r = m+1, s = m+2, the predictive density of Y as in (2.2)

is that of a P2(m+ α, h1, h2) distribution (3.9) with h1 =
n−m
x+β and h2 =

n−m−1
x+β .

Remark 3.2. Interestingly, the above weights ωi,j arise through a series expansion of the Beta function.

Indeed, by the the binomial expansion of (1− t)d−1 for d ∈ N+, we obtain for c > 0∫ 1

0
tc−1 (1− t)d−1 dt =

Γ(c)Γ(d)

Γ(c+ d)

=⇒
d−1∑
k=0

γc,d,k = 1 ,

with γc,d,k = Γ(c+d)
Γ(c)

(−1)k

k! (d−1−k)!
1

c+k . Furthermore, observe that ωi,j = ω1,i ω2,j with ω1,i =
(n−r)!
(n−s)! γn−r+1,r−m,i

and ω2,j =
(n−s)!
(n−r)! γn−s+1,s−r,j, demonstrating alternatively that

∑
i,j ωi,j = 1.

The mixture representation of the predictive density in Theorem 3.2 coupled with the bivariate Pareto
properties of Lemma 2.2 facilitate the evaluation of the marginal and conditional distributions associated
with (3.9). As shown below, mixture representations of univariate Pareto distributions arise.

Corollary 3.2. For m < r ≤ n− 1, the marginal density of Y1 associated with the Bayes predictive density
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(3.9) is given by

q̂π(y1|x) =

r−m−1∑
i=0

γn−r+1,r−m,i fm+α,
ai

x+β
(y1) , (3.10)

where γc,d,k is given in Remark 3.2 and fl,h is a univariate Pareto density as given in (2.7). In the particular

case where r = m+ 1, we have that q̂π(y1;x) = fm+α,n−m
x+β

(y1) for y1 > 0.

Proof. We have from Theorem 3.2

q̂π(y1|x) =

∫ ∞

0
q̂π(y|x) dy2

=
r−m−1∑
i=0

γn−r+1,r−m,i

s−r−1∑
j=0

γn−s+1,s−r,j

∫ ∞

0
g
m+α,

ai
x+β

,
bj

x+β

(
y
)
dy2,

which leads to (3.10) since the joint density g
m+α,

ai
x+β

,
bj

x+β

for Y has marginal fm+α,
ai

x+β
for Y1, for all i, j

(Lemma 2.2) and since
∑s−r−1

j=0 γn−s+1,s−r,j = 1.

The result in itself is not new and was obtained with the univariate analysis carried out by Dunsmore (1974).
A similar development establishes that (3.10) holds for the marginal predictive density of Xn:n−Xm:n. For
the conditional distributions, we have the following.

Corollary 3.3. For the Bayes predictive density (3.9):

(a) The conditional density of Y2 given Y1 = y1 is given by the mixture representation

q̂π(y2|y1;x) =

r−m−1∑
i=0

s−r−1∑
j=0

αi(y1)βj f
m+α+1,

bj
x+ β + ai y1

(y2),

with αi(y1) ∝ γn−r+1,r−m,i fm+α,
ai

x+β
(y1) such that

∑r−m−1
i=0 αi(y1) = 1, and βj = γn−s+1,s−r,j ;

(b) The conditional density of Y1 given Y2 = y2 is given by the mixture representation

q̂π(y1|y2;x) =

r−m−1∑
i=0

s−r−1∑
j=0

ξj(y2) νi fm+α+1,
ai

x+ β + βj y2

(y1),

with ξj(y2) ∝ γn−s+1,s−r,j f
m+α,

bj
x+β

(y2) such that
∑s−r−1

j=0 ξj(y2) = 1, and νi = γn−r+1,r−m,i.

Proof. Part (a) follows directly with the properties of Lemma 2.2 upon writing g
m+α,

ai
x+β

,
bj

x+β

(
y
)

=

fm+α,
ai

x+ β
(y1) f

m+α+1,
bj

x+ β + aiy1

(y2). The same approach leads to (b).

Remark 3.3. With the above marginal and conditional distributions expressible as mixtures of univariate
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Pareto distributions, corresponding moments are readily available. For instance, one obtains

µ1 = Eπ(Y1|x) =
x+ β

m+ α− 1

r−m−1∑
i=0

γn−r+1,r−m,i
1

ai

and µ2(y1) = Eπ(Y2|Y1;x) =

r−m−1∑
i=0

s−r−1∑
j=0

αi(y1)βj
x+ β + aiy1
(m+ α)bj

= y1

r−m−1∑
i=0

s−r−1∑
j=0

αi(y1)βj
ai

(m+ α)bj
+

x+ β

m+ α

s−r−1∑
j=0

βj
bj

.

Observe that the conditional expectation Eπ(Y2|y1;x) is a�ne linear of the form C +Dy1.

3.2. HPD Bayesian prediction regions

A Bayesian prediction region with credibility 1− λ for Z|θ based on an observed value x of X|θ and for a
given prior density π is such that ∫

R(x)
q̂π(z|x) dz = 1− λ, (3.11)

with q̂π given in (2.6). One such choice which minimizes volume is the ubiquitous HPD region which is of
the form

RHPD(x) =
{
z ∈ RN

+ : q̂π(z|x) ≥ k
}
, (3.12)

where k is chosen so that (3.11) is satis�ed. Here is an explicit form of the HPD credible region for the
future order statistics spacings Z1, . . . , ZN .

Theorem 3.3. Based on Xi:n, i = 1, . . . ,m, the �rst m order statistics among n from i.i.d. Exp(θ) data,
setting X as in (2.1) and Z as in (2.3), the HPD region of credibility 1− λ for Z associated with Gamma

prior πα,β for θ is given by

RHPD(x) =
{
z ∈ RN

+ :
N∑
i=1

(n−m− i+ 1) zi ≤ c0(x+ β)
}
, (3.13)

with c0 the quantile of order 1− λ of a B2(N,m+ α) distribution.

Proof. It follows from Theorem 3.1 that RHPD de�ned generally in (3.12) is of form (3.13). From Lemma

2.3, the posterior predictive distribution of W =
∑N

i=1
(n−m−i+1) zi

x+β is B2(N,m + α) distributed and the
result follows by setting c0 such that P(W ≤ c0) = 1− λ.

Remark 3.4. With simple integral or �nite sum forms for the B2(N,m + α) c.d.f., the evaluation of

the above quantiles is rather straightforward. For instance in the bivariate case, we have P(W ≤ c) =

1− 1+c (m+α+1)
(1+c)m+α+1 , so that c0 is expressible as the solution in c > 0 of

1 + c (m+ α+ 1)

(1 + c)m+α+1
= λ.

Remark 3.5. HPD credible regions are in general not invariant with respect to transformations, but they are

whenever the transformation is a�ne linear. Since the original order statistics T = (Xm+1:n, . . . , Xm+N ;n)
⊤

are related to the spacings Z = (Z1, . . . , ZN )⊤ by the a�ne linear transformation T = b + AZ, with
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b = (Xm:n, . . . , Xm:n)
⊤ and A a lower triangular matrix with non-zero elements ai,j = 1 for i ≤ j, the

transformation of RHPD(x) given by (3.13) to the order statistics Xm:n, . . . , Xm+N ;n is also HPD.

3.3. Prediction regions: an algorithm for the bivariate case

We present here a general bivariate case solution to obtain a prediction region with a given credibility
based on Theorem 3.2's predictive density for Y as in (2.2). There are several options available, but we
opt for a rather explicit strategy to construct a Bayesian credible region. It can be applied for any choice
of (r, s,m, n), prior πα,β such that m + α > 1, and the targeted credibility 1 − λ. We refer to notation
used throughout this paper, namely ai and bj as in Theorem 3.2, γc,d,k as in Remark 3.2, fl,h and F̄l,h as
the univariate Pareto density and survival functions in (2.7), βj and αi(y1) as in Corollary 3.3, and µ1 and
µ2(y1) as in Remark 3.3.

Step 1. Select a prediction region A for Y1 of credibility
√
1− λ based on the marginal density in

Corollary 3.2. Such a choice would desirably be an interval with relatively high levels of the predictive
density. A suitable choice is:

A =
[
µ1 −∆1, µ1 +∆1

]
∩ [0,∞) ,

with ∆1 > 0 uniquely chosen such that∫ µ1+∆1

µ1−∆1

q̂πα,β
(y1|x) dy1 =

√
1− λ

⇐⇒
r−m−1∑
i=0

γn−r+1,r−m,i

(
F̄m+α,

ai
x+β

(µ1 −∆1)+ − F̄m+α,
ai

x+β
(µ1 +∆1)

)
=

√
1− λ,

with z+ = max{0, z}. Since this last expression is strictly increasing in∆1, it is rather straightforward
to approach ∆1 numerically.

Step 2. For each y1 ∈ A, select a prediction region B(y1) of conditional credibility
√
1− λ for y2

based on the conditional density of Y2|Y1 = y1 given in part (a) of Corollary 3.3. The challenge
here is similar to the one in Step 1 but to be repeated for all y1. Analogously to Step 1, B(y1) can
reasonably be constructed pivoting around the mean as

B(y1) =
[
µ2(y1)−∆2(y1), µ2(y1) + ∆2(y1)

]
∩ [0,∞),

with ∆2(y1) > 0 chosen such that

r−m−1∑
i=0

s−r−1∑
j=0

αi(y1)βj

∫ µ2(y1)+∆2(y1)

µ2(y1)−∆2(y1)
f
m+α+1,

bj
x+β+aiy1

(y2) dy2 =
√
1− λ

⇐⇒
r−m−1∑
i=0

s−r−1∑
j=0

αi(y1)βj

(
F̄
m+α+1,

bj
x+β+aiy1

(µ2(y1)−∆2(y1))+ − F̄
m+α+1,

bj
x+β+aiy1

(µ2(y1) + ∆2(y1))
)

=
√
1− λ.
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The resulting prediction region R = {(y1, y2) : y1 ∈ A, y2 ∈ B(y1)} has credibility 1− λ indeed since

Pπ

(
Y1 ∈ A, Y2 ∈ B(y1)|x

)
=

∫
A
q̂π(y1|x)

{∫
B(y1)

q̂π(y2|y1;x) dy2
}
dy1

=

∫
A
q̂π(y1|x) (

√
1− λ) dy1

= 1− λ.

Remark 3.6. Other regions can also be selected. For instance, one-sided choices with A of the form [0, ∆̄1]
or [∆1,∞), and with B of the form [0, ∆̄2(y1)] or [∆2(y1),∞). Another alternative would be to aim for

di�erent credibilities 1− λ1 and 1− λ2 in Steps 1 and 2, respectively, such that (1− λ1)(1− λ2) = 1− λ.

3.4. Example

The following dataset from Murthy et al. (2004) shows n = 30 ordered failure times for repairable items:

0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.77
0.94 1.06 1.17 1.23 1.23 1.24 1.43 1.46 1.49 1.74
1.82 1.86 1.97 2.23 2.37 2.46 2.63 3.46 4.36 4.73

For the purpose of illustration, suppose that only the m = 20 �rst values are observed and that we wish to
predict either:

(i) the next two order statistics spacings (Z1, Z2) =
(
X21:30 −X20:30, X22:30 −X21:30

)
,

or

(ii) the next and last order statistics
(
X21:30, X30:30

)
.

In both cases, we use the non-informative prior density π(θ) = 1
θ I(0,∞)(θ), and consider credibility 1−λ =

0.95. As expanded upon in the next section, the frequentist coverage of such a prediction region matches
the credibility for all θ > 0. The data yields x =

∑20
i=1 xi:30 + 10x20:30 = 35.79.

For case (i), Theorem 3.3 applies and the HPD credible region for (Z1, Z2) is given by

RHPD(35.79) =
{
(z1, z2) ∈ R2

+ : 0.2794 z1 + 0.2515z2 ≤ 0.2606
}
,

c0 = 0.2606 being the quantile of order 0.95 of a B2(2, 20) distribution.

For case (ii), we illustrate the use of Section 3.3's algorithm which is prescribed for (Y1, Y2) with Y1 =
X21:30−X20:30 and Y2 = X30:30−X21:30. Figure 1 (a) presents the resulting Bayesian prediction region along
with the regression function or conditional expectation E(Y2|y1, x = 35.79) as a function of y1. The �rst step
yields A = [0, 0.722], while the B(y1) intervals are shown in the �gure. For example, B(0.50) = [0, 13.059].
Observe that a left neighbourhood of 0 is included in B(y1) for all y1 ∈ A as the second step credibility,
equal to (0.95)1/2 ≈ 0.9747, is quite large. In contrast, the Bayesian prediction region with credibility
0.80 is displayed in Figure 1 (b) resulting in A = [0, 0.4258] and intervals B(y1) centered at E(Y2|y1, x =
35.79) which exclude values close to 0 for all y1 ∈ A. Finally, the corresponding prediction regions for(
X21:30, X30:30

)
and credibilities 0.95 and 0.80 are obtained as {(y1+x20:30, y1+ y2+x20:30) : (y1, y2) ∈ R}

and displayed in Figure 2.
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Figure 1: Bayesian prediction regions and E(Y2|y1, x = 35.79) (dashed)
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Figure 2: Bayesian prediction regions for (X21:30, X30:30) in case (ii)

4. Frequentist coverage and credibility

Through Theorem 3.2's Bayesian predictive densities, the prediction regions for future order statistics
described in the previous section are constructed in order to attain exact Bayesian credibility. This includes
the non-informative prior prediction densities q̂π0(·;X) given by Theorems 3.1 and 3.2 for α = β = 0.
Moreover, prediction regions based on q̂π0(·;X) also lead to exact frequentist coverage as expanded on
below. In fact, we cast the result in a more general scale parameter family model setting with scale
parameter densities

pσ(x) =
1

σ
p1(

x

σ
) and qσ(y

′) =
1

σd2
q1(

y′1
σ
, . . . ,

y′d2
σ

). (4.14)

We will make use of the following intermediate result, a univariate version of which was �rst given by
L'Moudden et al. (2017) (i.e., d2 = 1).

Lemma 4.4. Under model (4.14) and prior density π0(σ) = 1
σ I(0,∞)(σ), the Bayesian predictive density

q̂π0 is given by

q̂π0(y
′|x) =

1

xd2
h(

y′

x
), (4.15)
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where h is the frequentist density of R = Y ′

X = (R1, . . . , Rd2), which is free of σ, and given by

h(r) =

∫ ∞

0
ud/2 q1(r1u, . . . , rd2u) p(u) du. (4.16)

Furthermore, it is the case that

(Y ′
1

x
, . . . ,

Y ′
d2

x

)∣∣x =d
(Y ′

1

X
, . . . ,

Y ′
d2

X

)∣∣σ for all x, σ, (4.17)

i.e., the posterior predictive and frequentist distributions of R match and are furthermore independent of

the observed value of x and the parameter value of σ.

Proof. Identity (4.17) follows from the �rst part of the lemma. A direct evaluation yields (4.16) as the
density of R|σ. Finally, the posterior density of σ is given by π(σ|x) = x

σ2 p1(
x
σ ), which leads to the

predictive density

q̂π0(y
′|x) =

∫ ∞

0

1

σd2
q1(

y′1
σ
, . . . ,

y′d2
σ

)
x

σ2
p1(

x

σ
) dσ

=
1

x2

∫ ∞

0
ud2q1

(y′1u
x

, . . . ,
y′d2u

x

)
p(u) du

=
1

xd2
h(

y′

x
) .

Remark 4.7. Identity (4.17) is quite general and clari�es why Bayesian analysis with respect to the prior

density π0 matches pivotal based analysis that stems from the right-hand side. In the univariate case and for

the prediction of a single future order statistic, as remarked upon by Dunsmore (1974), the identity explains

leads to his Bayesian solutions matching the pivotal based solution of Lawless (1971).

Theorem 4.4. Consider model (4.14) and a Bayesian prediction region R(X) with credibility 1−λ associ-

ated with the prior density π0(θ) =
1
θ I(0,∞)(θ). Then, R(X) has exact frequentist coverage probability, i.e.,

P(R(X) ∋ Y ′|θ) = 1− λ for all θ > 0.

Proof. Since R(X) has credibility 1− λ, we have

P
(
Y ′ ∈ R(x))|x

)
= P

(Y ′

x
∈ R∗(x)

∣∣x) = 1− λ,

where R∗(x) = {r ∈ Rd2
+ : r

x ∈ R(x)}. Now, since the predictive distribution of Y ′

x is free of x with p.d.f.
h (Lemma 4.4), it follows that R∗(x) is free of x such that

∫
R∗(x) h(z) dz = 1− λ. On the other hand, the

frequentist coverage of R(X) is given by

P(Y ′ ∈ R(X)| θ ) = P
(Y ′

X
∈ R∗(X)

∣∣θ) =

∫
R∗(x)

h(r) dr = 1− λ,

since h is also the density of Y ′

X |θ (Lemma 4.4).

To conclude, the above (with Y ′ = Y or Y ′ = Z) applies to our set-ups as follows.

Corollary 4.4. Based on X as in (2.1) and the non-informative prior density π0(θ) =
1
θ I(0,∞)(θ), Bayesian

predictive regions for Z or Y with credibility 1− λ, based on the predictive densities given in Theorems 3.1

and 3.2, have matching frequentist coverage probability 1− λ for all θ > 0.
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5. Best invariance and minimaxity

As seen in Section 3, Bayesian predictive densities such as those given in Theorem 3.2 facilitate the con-
struction of a prediction region for future values of Y or Z with a given credibility. Non-Bayesian predictive
densities are also available, such as plug-in densities and those obtained by likelihood or pivotal-based meth-
ods. Kullback-Leibler (KL) divergence loss and accompanying risk can be used to evaluate the frequentist
performance of density estimators q̂(·;X). For our problem, these are given by

LKL(θ, q̂(·;x)) =

∫
qθ(t) log

( qθ(t)

q̂(t;x)

)
dt

(assuming Lebesgue densities), and

RKL(θ, q̂) = Eθ

{
LKL(θ, q̂(·;X))

}
.

It is of interest to assess the e�ciency of predictive densities for KL risk, and decision-theoretic properties of
invariance and minimaxity applicable to our contexts are reviewed in this section. An early contribution to
the determination of a best invariant density is due to Murray (1977), while a more exhaustive treatment of
best invariant densities, as well as minimaxity in predictive density estimation, appears in Liang & Barron
(2004).

A density q̂m is minimax whenever q̂m minimizes among all densities the supremum frequentist risk, i.e., in
our cases when

sup
θ>0

RKL(θ, q̂m) = inf
q̂
sup
θ>0

RKL(θ, q̂) .

For our problems, and more generally model (4.14) with σ = 1/θ, Kullback-Leibler divergence loss, a
predictive density q̂ is invariant under changes of scale whenever it satis�es the scale parameter family
property

q̂(y′; cx) =
1

cd2
q̂(
y′

c
;x) , y′ ∈ Rd2

+ , (5.18)

for all c, x > 0. The class of invariant densities here includes q̂π0 ; as can be veri�ed directly from the
expressions given in Theorems 3.1 and 3.2 with α = β = 0, or even by (4.15); as well as plug-in densities
qθ̂ with σ̂(x) = kx, i.e., a scale invariant point estimator σ̂ of θ satisfying σ̂(cx) = c θ̂(x) for c, x > 0; such
as the maximum likelihood choice with c = 1/m.

The present invariance structure implies that an invariant density has constant risk as a function of θ as
long as it is �nite, from which it follows that there exists an optimal choice among invariant densities. The
risk constancy follows for vastly more general settings (e.g., Berger, 1985), but can be also derived directly
as follows:

RKL(cσ, q̂) =

∫
(0,∞)

pcσ(x)

∫
(0,∞)d2

qcσ(y
′) log

(qcσ(y′)
q̂(y;x)

)
dy′ dx

=

∫
(0,∞)

1

c
pσ(

x

c
)

∫
(0,∞)d2

qσ(
y′

c
)
1

cd2
log

( qσ(
y′

c )

q̂(y
′

c ;
x
c )

)
dy′ dx

=

∫
(0,∞)

pσ(t)

∫
(0,∞)d2

qσ(u) log
( qσ(u)
q̂(u; t)

)
du dt

= RKL(σ, q̂),

for c, σ > 0, with the change of variables (t, u) = 1
c (x, y

′), and by making use of (5.18).

Under general conditions for problems that are invariant, which are met here, a best invariant procedure
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exists and coincides with the generalized Bayes estimator associated with a (right) invariant prior density
(e.g., Berger, 1985, section 6.6.2). In out set-up, such a prior density is the non-informative π0, and it leads
to the best invariant property of the density q̂π0 . Furthermore, q̂π0 is minimax (see Liang & Barron (2004),
Theorem 2 and Proposition 3). We conclude this section by summarizing the above as applicable (with
Y ′ = Y or Y ′ = Z) to the problems at hand.

Theorem 5.5. Consider Xi:n, i = 1, . . . ,m, the �rst m order statistics among n from i.i.d. Exp(θ) data,
and X, Y , and Z as in (2.1), (2.2) and (2.3). Then the best invariant densities for estimating the densities

of Y and Z, respectively, under KL divergence loss are q̂π0, as given in Theorems 3.1 and 3.2 for α = β = 0.
Furthermore, its KL risk is constant as a function of θ and q̂π0 is minimax.

6. Concluding remarks

We have illustrated the natural usage of Bayesian credible regions for the prediction of future order statistics
under a type-2 censoring scheme with exponentially distributed data. We have emphasized multivariate
aspects and provided explicit expressions for Bayesian predictive densities and resulting prediction credible
regions. We have also addressed optimality properties achieved with the non-informative prior density
choice, such as the matching of Bayesian credibility and frequentist probabilty coverage, as well as the best
invariant and minimax properties of the corresponding Bayesian predictive density.

It would be interesting to extend the analysis more broadly to other types of probability models and
censoring schemes. We have provided a Bayesian HPD credible region (Theorem 3.3) for the next N future
order statistics. However, for the general bivariate case, such a solution is lacking. We do not know for
instance if the Bayesian predictive density is unimodal which would facilitate the determination of such a
region.
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