Tensor network contraction

What is a tensor network?

"To-do" list of tensor multiplications – <u>contractions</u>

Examples

• matrix-vector multiplication:

$$\vec{w} = M\vec{v} : w_i = \sum_j M_{ij}v_j \qquad i - \underbrace{\bigoplus_j \vec{v}}_{j} = i - \underbrace{\bigoplus_j \vec{v}}_{j}$$

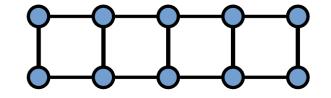
7 1

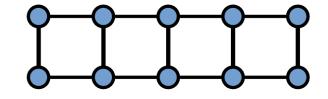
• matrix product:

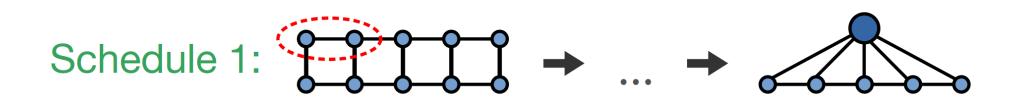
$$D = ABC : D_{il} = \sum_{j,k} A_{ij} B_{jk} C_{kl}$$

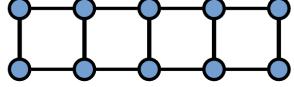
$$i - \underbrace{\bigcirc}_{j} \underbrace{\bigcirc}_{k} \underbrace{\bigcirc}_{k} l = i - \underbrace{\bigcirc}_{k} \underbrace{\bigcirc}_{k} i = i - \underbrace{\bigcirc}_{k} i = i - \underbrace{\bigcirc}_{k} i = i - \underbrace{\bigcirc}_{k} i = i - \underbrace{\bigcirc}_{k} i = i - \underbrace{\bigcirc}_{k} i =$$

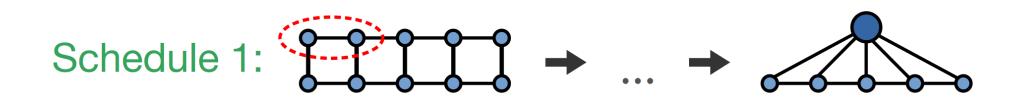
Example:

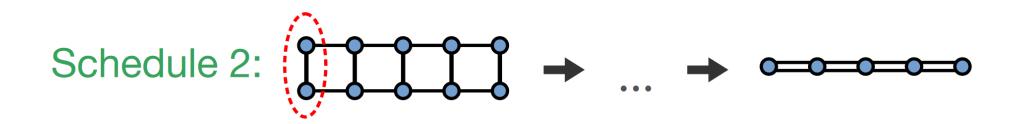






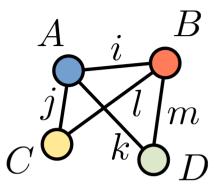




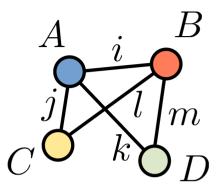


Example:

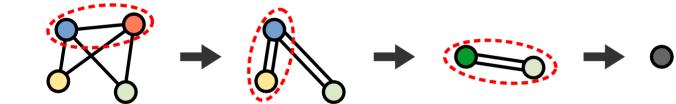
 $\sum_{ijklm} A_{ijk} B_{ilm} C_{jl} D_{km}:$ ijklm



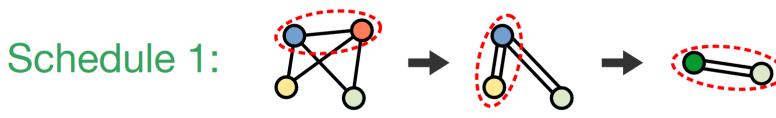
Example: $\sum_{ijklm} A_{ijk} B_{ilm} C_{jl} D_{km}:$



Schedule 1:



Example: $\sum_{ijklm} A_{ijk} B_{ilm} C_{jl} D_{km}:$



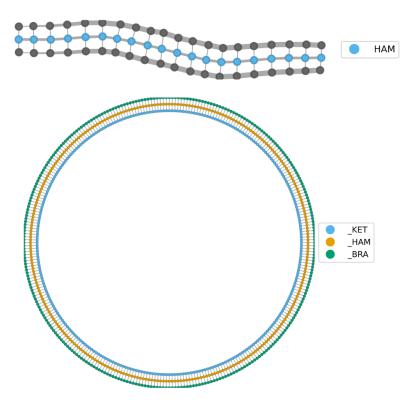
→ 0

m

Easy cases:

Easy cases:

MPS algorithms; e.g., DMRG:

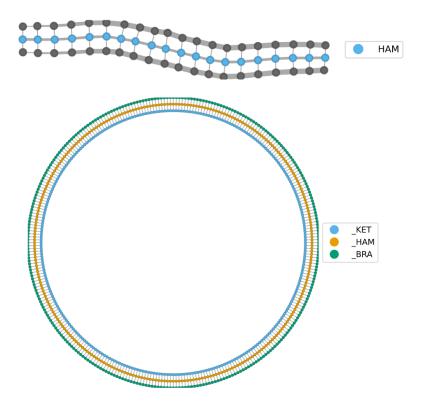


Johnnie Gray, *quimb* library https://github.com/jcmgray/quimb

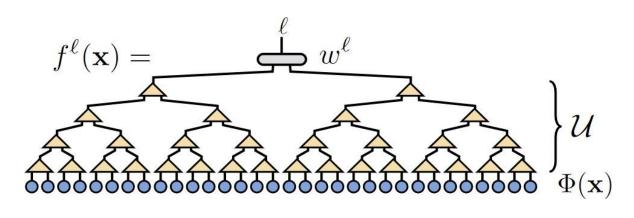
Easy cases:

MPS algorithms; e.g., DMRG:

Tree TNs:



Johnnie Gray, *quimb* library https://github.com/jcmgray/quimb

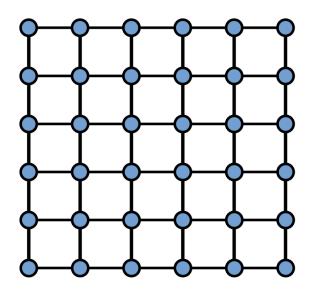


Stoudenmire (2018)

Less obvious: higher dimensions

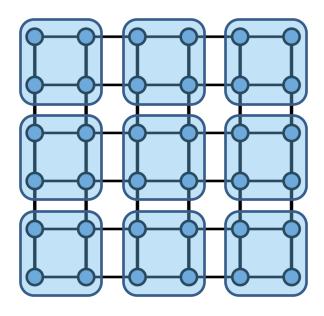
Less obvious: higher dimensions

Coarse graining:



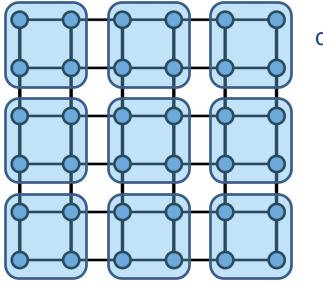
Less obvious: higher dimensions

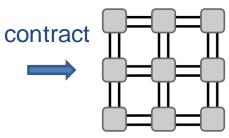
Coarse graining:



Less obvious: higher dimensions

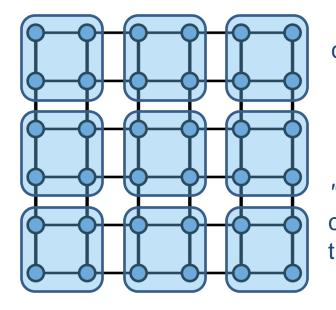
Coarse graining:

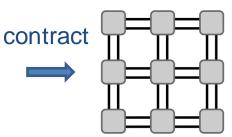




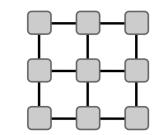
Less obvious: higher dimensions

Coarse graining:





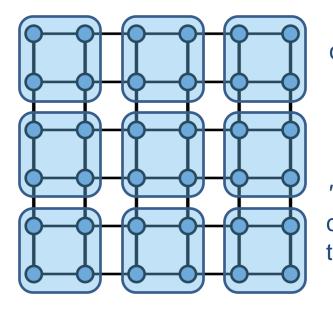
"trim" bonds: contraction+ truncated SVD

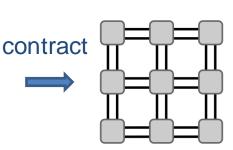


Levin & Nave (2007)

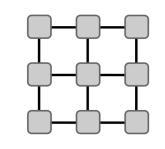
Less obvious: higher dimensions

Coarse graining:

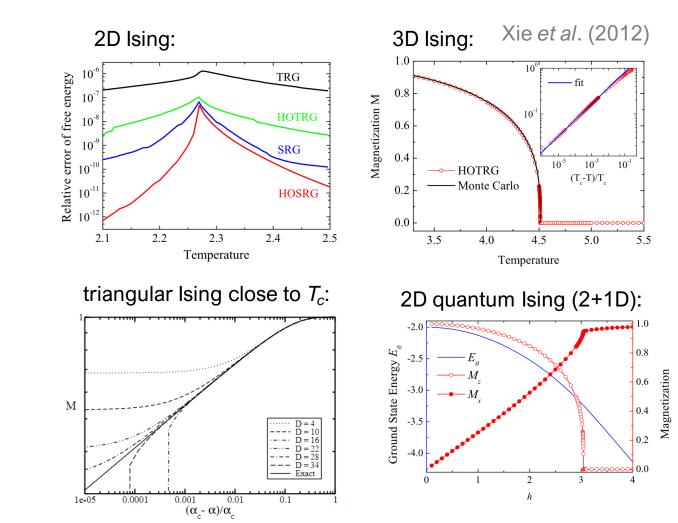




"trim" bonds: contraction+ truncated SVD

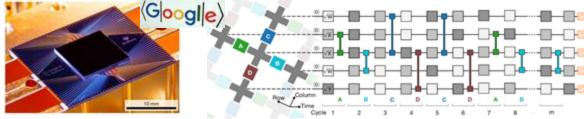


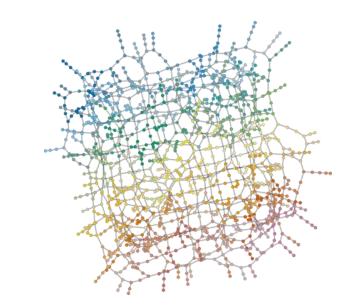
Levin & Nave (2007)

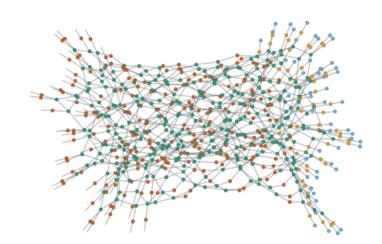


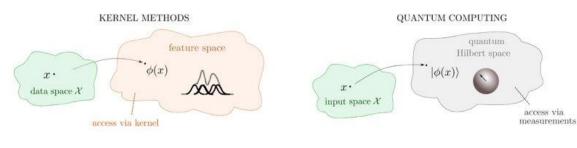
Not at all obvious: unstructured TNs

Quantum supremacy using a programmable superconducting processor Arute *et al.* (2019)









Schuld (2021)

Coarse-graining irregular networks

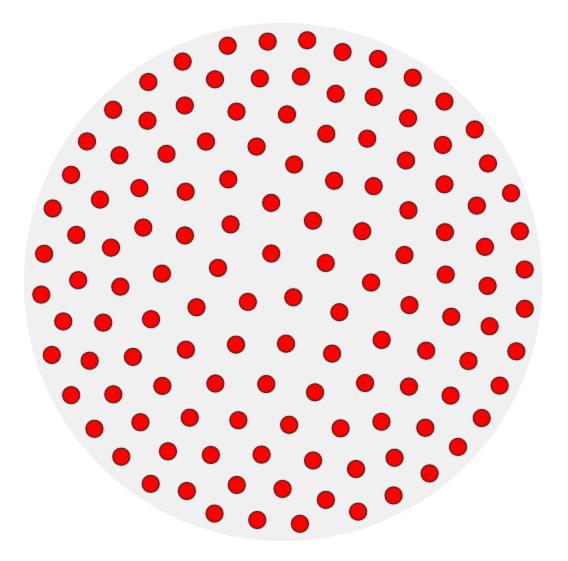
Methods:

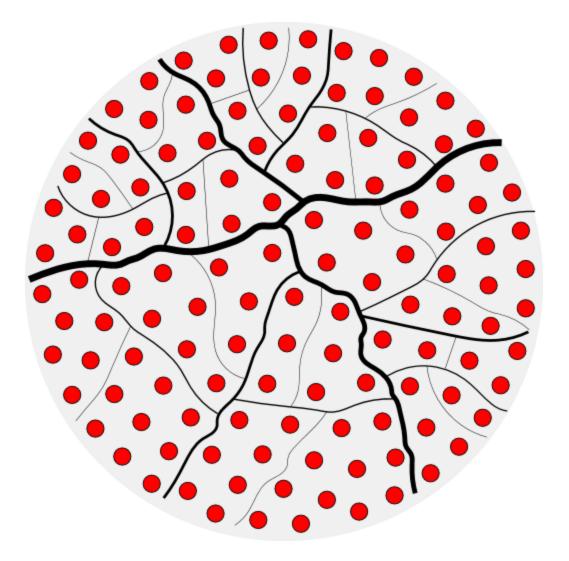
- Exhaustive search
- "Bubbling"
- Tree decomposition of line graph

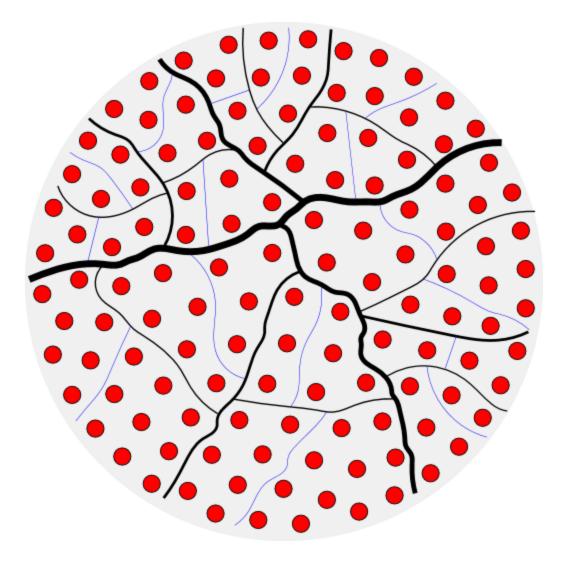
Coarse-graining irregular networks

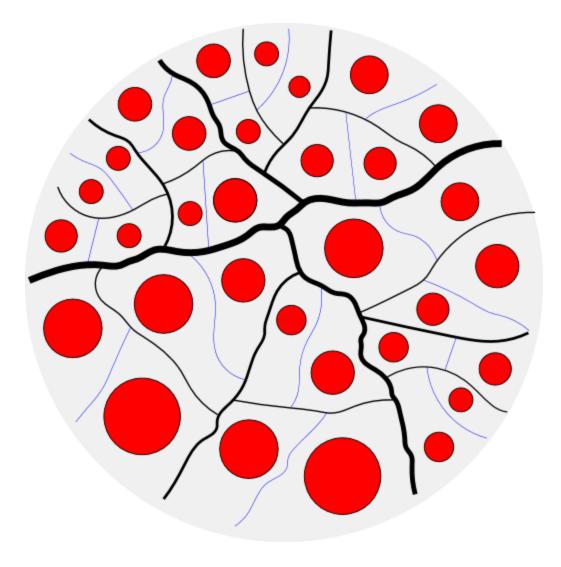
Methods:

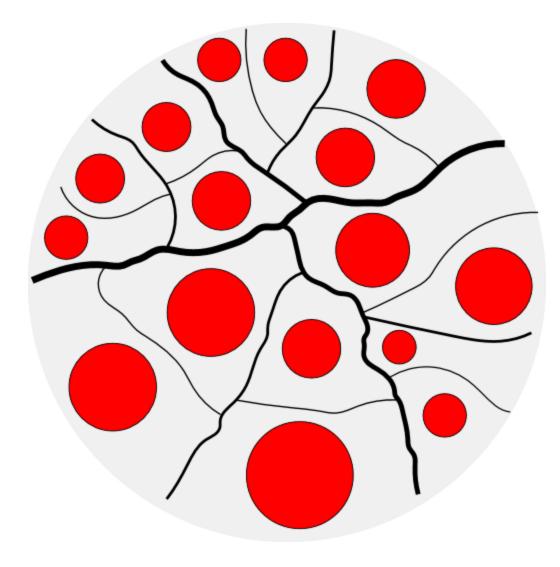
- Exhaustive search
- "Bubbling"
- Tree decomposition of line graph
- Community detection
- Hierarchical graph partitioning

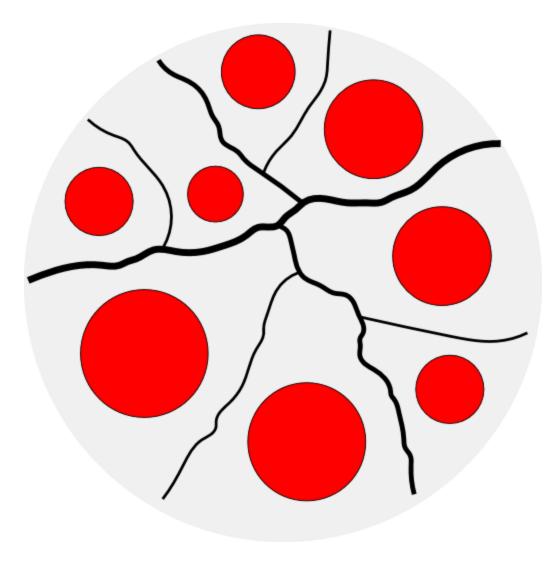


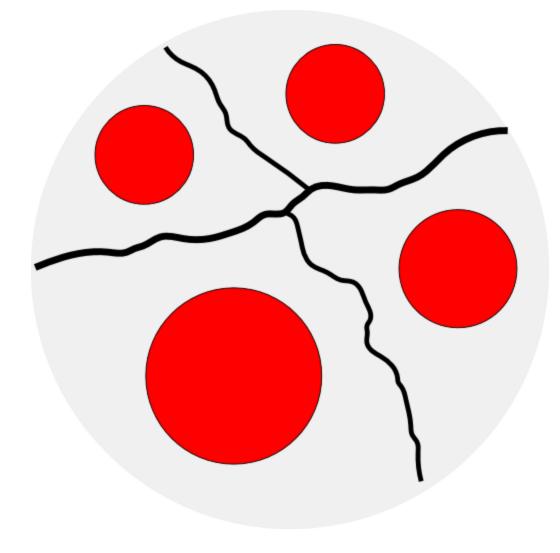


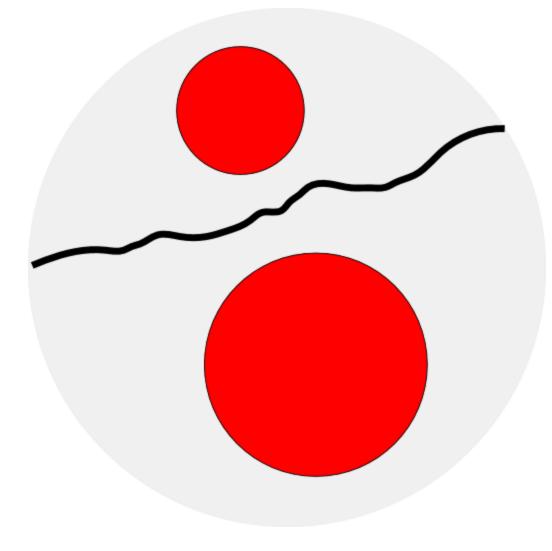












42

Model counting (#SAT)

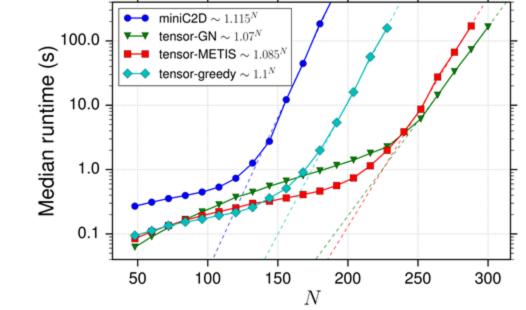
variables:
$$x_i \in \{0, 1\}, i = 1, ..., n_x$$

 $clauses: c_m = x_p \lor x_q \lor x_r$
formula: $\phi = \bigwedge_{m=1}^{n_c} c_m$
 $\int_{m=1}^{x_i} c_m$
 $\int_{m=1}^{x_i} \int_{m=1}^{x_i} c_m$

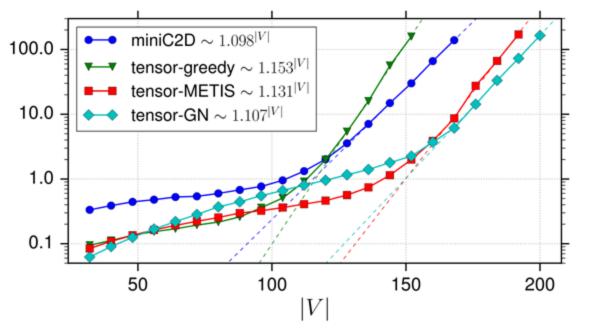
How many assignments \vec{x} satisfy ϕ ?

Model counting with TNs

Kourtis et al. (2018)



#vertex covers on cubic graphs

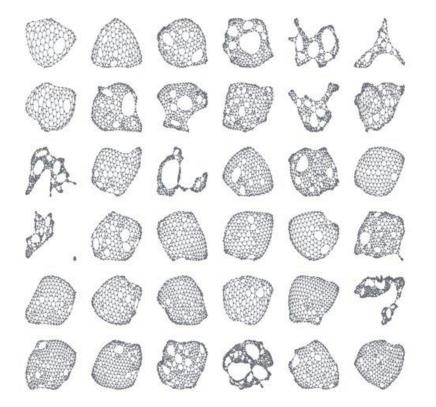


See also: Dudek, Dueñas-Osorio, Vardi (2019); Dudek & Vardi (2020)

Weighted model counting with TNs

MC 2020 (Model Counting 2020)

The 1st International Competition on Model Counting (MC 2020) is a competition to deepen the relationship between latest theoretical and practical development on the various model counting problems and their practical applications. It targets the problem of counting the number of models of a Boolean formula.



2020 champion: 69/100 instances solved within timeout TN solver: 99/100 instances solved within timeout

Quantum computation simulation

qubit:
$$|\psi\rangle = a|0\rangle + b|1\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$$
: $|\psi\rangle$
 \bullet $i = 0, 1 \to |i\rangle$

Quantum computation simulation

qubit:
$$|\psi\rangle = a|0\rangle + b|1\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$$
: $\begin{vmatrix} \psi \\ \bullet \end{vmatrix}$ $i = 0, 1 \to |i\rangle$

quantum gate: $|\psi'\rangle = U|\psi\rangle$

1-qubit:
$$i - j = 2$$
-qubit: $i - j = k$

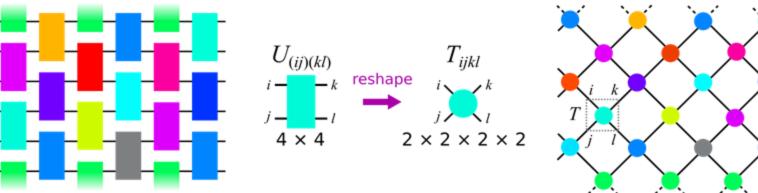
Quantum computation simulation

qubit:
$$|\psi\rangle = a|0\rangle + b|1\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$$
: $\begin{vmatrix} \psi \\ \bullet \end{vmatrix}$ $i = 0, 1 \to |i\rangle$

quantum gate: $|\psi'\rangle = U|\psi\rangle$

1-qubit:
$$i - j = 0$$
 2-qubit: $j = 0$ k

quantum circuit:

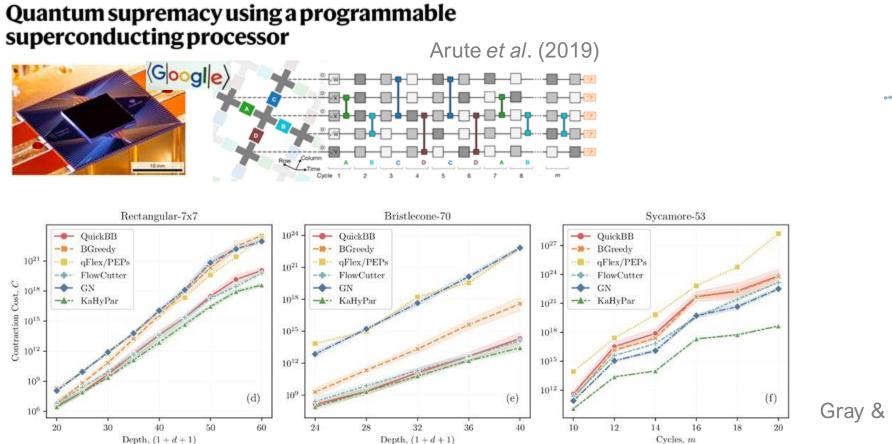


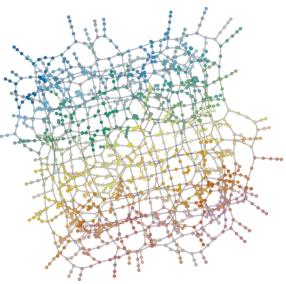
Random quantum circuit TN simulation

Quantum supremacy using a programmable superconducting processor

Arute et al. (2019)

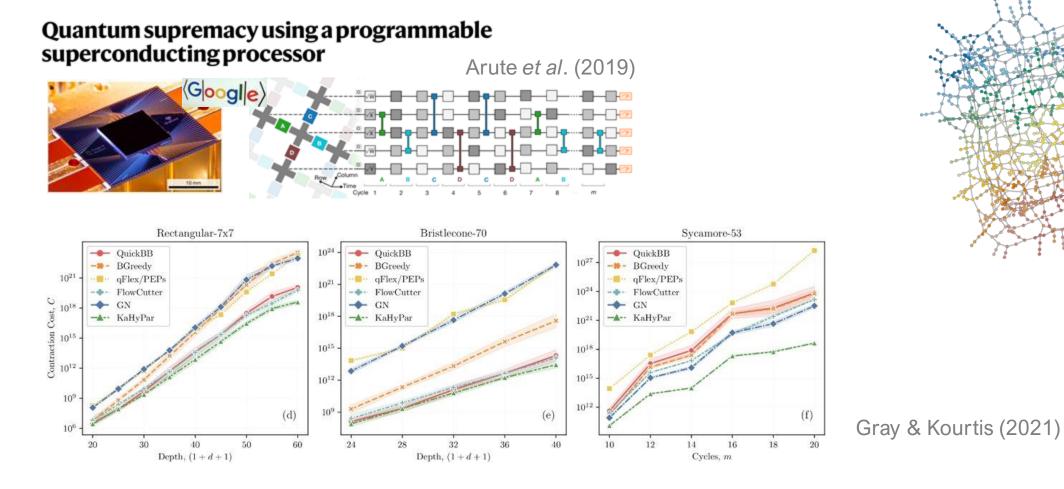
Random quantum circuit TN simulation





Gray & Kourtis (2021)

Random quantum circuit TN simulation



Gray & Kourtis (2020) Yong *et al.* (2021) Pan, Chen, Zhang (2021)

~195 days @ 281 petaFLOPs (Summit) (est.) ~300s @ 1.2 exaFLOPs (est.) ~few dozen s @ exaFLOPs \rightarrow 15 hours using 512 GPUs

Recap

Course outline

- Lecture 1
 - a. Bird's-eye view: ~2.5 millennia of tensor networks
 - b. Elementary theory of entanglement
- Lecture 2
 - a. Matrix-product states & operators
 - b. Eigenstate-finding; time evolution
- Lecture 3
 - a. Logic as tensor networks
 - b. Everything as tensor networks
- Lecture 4
 - a. Tensor network contraction & examples
 - b. Summary & outlook

Outlook

Future contractions

- Data science & ML
 - o many new techniques
 - $\circ\,$ specialized hardware
- Quantum computation
 - o tomography
 - o hybrid quantum-classical algorithms
- Computational science
 - o combinatorial optimization
 - \circ approximate algorithms
- Physics

o disordered systems (no symmetries)